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Tomato is an important player in the agricultural market.
It is the second most consumed vegetable in the world
and is a source of important micronutrients such as
lycopene and â-carotene. Recent research has demon-
strated that these carotenoids can act as free-radical
quenchers in the body and prevent aging, tissue damage,
heart disease, and certain cancers. Besides these micro-
components, tomato is composed of soluble and insoluble
solids. In industry, these solids govern factory yield and
play a major role in the tomato trade. Nowadays, standard
methods for determining tomato solids and carotenoids
are time and labor consuming. In this work, we present
the development of a simultaneous and nondestructive
method for determining total and soluble solids, as well
as lycopene and â-carotene, in tomato products by near-
infrared spectroscopy. PLS-1 was the calibration tech-
nique chosen. For spectra preprocessing, MSC and
second derivative were applied. As variable selection
techniques, the correlogram cutoff, the successive projec-
tions algorithm, the dimension wise selection, and spectra
splitting approach were applied. Best models presented
satisfactory prediction abilities evaluated through its RM-
SEP and r values: total solids 0.4157, 0.9998; soluble
solids 0.6333, 0.9996; lycopene 21.5779, 0.9996;
â-carotene 0.7296, 0.9981.

Tomato (Lycopersicon esculentum) is the second most con-
sumed vegetable in the world, right after potato.1 The amounts
involved in its production and commercialisation are impressive,
corroborating its economical role within the agricultural business.
In 2003, world production was ∼110 million tons, and in Brazil,
3.3 millions tons were commercialised.2,3 Most of its volume is
used by the food industry in the manufacture of products such as
ketchup, tomato concentrates, and tomato sauce, but a significant
volume is still purchased in natura by consumers.1,4

The fruit is composed, broadly speaking, of tomato solidss

soluble and insolublesand water. Soluble solids are mainly sugars,
like sucrose and fructose, and salts, like KCl, and are traditionally
determined by refractometry and expressed as degrees Brix
(° Brix).5 Insoluble solids are mainly constituted by fibers, such
as cellulose and pectin. Total solids are the summation of soluble
and insoluble solids and are determined by oven drying and
expressed as percent in mass.5 Usually, excluding seeds and skin,
tomato presents 4.5-8.5% total solids, depending on variety, soil,
and climate conditions.1,4

In industry, tomato solids dictate the factory yield: the highest
the tomato solids amount the less tomato has to be used to
produce processed tomato products. Besides, in industry, this
parameter has to be controlled in many different production steps
and thus it has considerable influence in the tomato trade.1

Tomatoes are also important sources of healthy micronutrients
such as carotenoids, mainly lycopene and â-carotene.6,7 While
â-carotene is a provitamin A, recent research has shown that
lycopene may prevent heart diseases, arteriosclerosis, and some
types of cancer, including the prostate, lung, and colon.8-10

Synergies between carotenoids and other antioxidants, especially
vitamins C and E, resulting in various healthy benefits have been
reported but are still under investigation.11,12 The highly unsatur-
ated structure of these carotenoids may also prevent aging and
tissue damage by quenching free radicals formed by oxidative
metabolic processes in the body.13,14

There are several methods for determining carotenoids in
tomato products reported in the literature, most of them based
on solvent extraction followed by HPLC separation.15-18 On
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average, it takes 40-50 min to have the results of one sample
if the preparation time and the chromatographic run are
considered.16-18

Because of these health claims, tomato producers, research
institutions, and the food industry are working together on
breeding programs for the development of new “high lycopene”
varieties that could be used in the manufacture of functional
tomato-based foods as well as a less expensive lycopene source
for the pharmaceutical and cosmetics industries. In such pro-
grams, success is usually determined by standard, time, and labor
consuming analytical methods.

But as in breeding programs the number of screening varieties
can be huge,1,4 the application of quick, solvent-free, and on field
analytical techniques would present an enormous advantage over
the conventional, wet chemistry-based approaches. NIR spectros-
copy, allied to multivariate calibration techniques, fulfills the above
requirements19-21!

Food chemistry was, indeed, one of the most benefited fields
by the application of NIR spectroscopy for the determination of
a series of properties in different food matrixes.22-27 The very
first publication on tomato quality parameters is by Hong
and Tsou.28 More recently, Goula and Adamopoulos29 have
determined moisture, sugars, total acidity, salt, and protein in
tomato products and Jha and Matsuoka30 have calibrated the
acid/Brix ratio, an important sensorial parameter of consumer
acceptance, of various tomato juices. Nevertheless, carotenoids
were never calibrated by near-infrared spectroscopy (NIR) or any
other fast technique.

The objective of this work is to set up a method for determin-
ing, simultaneously and nondestructively, the contents of total and
soluble solids, as well as the amounts of lycopene and â-carotene
in tomato concentrate products via NIR and multivariate calibration
techniques.

EXPERIMENTAL SECTION
Forty-two samples of tomato concentrate products, with total

solids content varying from 6.9 to 35.9% (6.8 and 31.1 °Brix,
respectively) were purchased in various markets from Brazil,
Argentina, the United States, and Europe (The Netherlands, Italy,
and Greece). These samples presented a broad range of variation
for calibrating the properties of interest.

As tomato products are quite sensitive to molding, reference
analyses and spectra acquisition (see below) were performed right
after the packages’ opening.

Reference Analysis. Total solids (%) were determined in
triplicate by using a Fanem EV8 oven (Fanem, Co., São Paulo,
Brazil). Approximately 3 g of sample was weighed, with 0.0001-g
accuracy, in an aluminum capsule containing ∼0.6 g of diatoma-
ceous earth.31 After dispersion of the sample in the diatomaceous
earth, aluminum capsules were kept at 70 °C under vacuum (∼150
mmHg absolute pressure) using an Edwards E2M8 vacuum pump,
until constant weight (∼4 h).

Soluble solids were determined in duplicate by using an Abbe
benchtop refractometer (American Optical, Inc., Baltimore, MD),
with 0.1° Brix accuracy using temperature correction. All the
readings were performed at room temperature (20-24 °C) after
filtration through hydrophilic cotton.1,32

Lycopene and â-carotene (mg kg-1) were determined using a
Shimatzu HPLC (Shimadzu, Co., Kyoto, Japan) equipped with a
CTO-10A column oven, a Sil-10A automatic injector, LC-10AD
pumps, and a SPD-10AV UV-visible detector at 473 nm. Separa-
tion was achieved using a RP18 Zorbax ODS column (5 µm, 15 ×
0.46 cm). The mobile phase was MetOH/THF/H2O (67:27:6),
isocratic at 1.0 mL/min. Typical retention times were 17.5 min
for lycopene and 20.8 min for â-carotene. Sigma-Aldrich standards
where used to build analytical curves for lycopene (Catalog No.
C 0251) and â-carotene (Catalog No. L 9879).

For the extraction procedure, the method suggested by Sadler
et al.15 was applied. A 5-g sample was weighed, with 0.0001-g
accuracy, in a 250-mL Erlenmeyer flask; 100 mL of solvent mixture
hexane/acetone/ethanol (50:25:25) was added. The Erlenmeyer
flask was kept away from light while the solvent mixture was kept
in contact, under agitation by a magnetic stirrer, with the sample.
After 10-min agitation, 10 mL of distilled water was added, and
the mixture was kept under agitation for 5 min more. Agitation
was than turned off, and the solution was allowed to separate into
the organic and aqueous phases. An aliquot of the hexane phase
was immediately collected to a 2-mL vial with silicon septa and 5
µL was injected.

NIR Spectra Acquisition. The NIR spectra were acquired
immediately after opening of the samples. A suitable aliquot of
the sample was added to the bottom of a glass Petri dish (Schott
23 755 48 05), and readings were performed in a Büchi NIRLab
N-200 spectrometer (Büchi Labortechnik AG, Postfach) equipped
with a MSC-100 diffuse reflectance cell with sample rotation
system.33 This rotating system promotes a better sampling surface
and also prevents local heating of the sample by the infrared
radiation. Spectra were acquired at room temperature (20-24 °C).

Petri dish infrared radiation absorption was evaluated using
MgO (Merck 105.866) as reference material and was considered
negligible.

Three spectra were collected, each one using 100 scans in the
4000-10 000 cm-1 range, with 4 cm-1 of resolution.
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Multivariate Calibration. Following the traditional convention
in linear algebra, in this work vectors are represented by boldface
lower case type, matrices by boldface upper case type, scalars by
italic lower case letters, and sequences by italic subscripts.

Partial least squares (PLS-1) was the regression method elected
to build the calibration models. Original spectra were prepro-
cessed by applying a mean smoother with a window width of 15
wavenumbers, followed by multiplicative signal correction (MSC)34

or second derivative according to the algorithm proposed by
Savitsky and Golay. Data (spectra and property vector) were mean-
centered prior to calibration.19,35-38

The 42 original samples (126 spectra) were split into two
groups. Five samples (15 spectra) were separated for external
validation and the least 37 samples (111 spectra) were used for
calibration. The samples presenting extreme values for each
property were included in the calibration set.

Cross-validation following the leave-one-out procedure was
performed during the validation step in order to define the
optimum number of factors to keep in the model and to detect
any outliers. Leverage (eq 1) and studentized residuals (eq 2) were
calculated and plotted for each sample (Figure 1). Samples
presenting high leverage and studentized residuals that had
significant detrimental effects on the model were considered
outliers and removed from the model.19,37

where hi corresponds to the leverage value of the ith sample and
X is the matrix containing the spectra. X has N lines, correspond-
ing to the number of samples, and K columns, corresponding to

the wavenumbers. xi is the spectra for the ith sample, and xj is
the average spectra.

in which Lresci corresponds to the residual for the ith sample,
standardized by its leverage value, SRi stands for the studentized
residual, and yi and ŷi are, respectively, the measured and the
estimate values of the property y for the ith sample.

External validation was performed and the models with best
predictive abilities, considering lowest RMSEP (eq 3) and higher
validation correlation coefficient (eq 4), were taken.19,37-39

where RMSEP is the root-mean-squared error of prediction, r is
the correlation coefficient between the estimated and the predicted
values, and s2(y) and s2(ŷ) are, respectively, the variances for the
measured and predicted values for the property y.

Variable Selection Techniques. To find the very best models
for predicting the properties of interest, four different variable
selection techniques were applied to the preprocessed spectra:
correlogram cutoff, the successive projections algorithm (SPA),
the dimension wise selection (DWS), and the splitting of the
preprocessed spectra.19,20,40

Correlograms are charts that bring the values of the correlation
coefficients of each variable with a specific property. Correlograms
using the calibration spectra were built for each property, and an
absolute value of correlation coefficient was taken as a cutoff
parameter (Figure 2a). Only variables with corresponding cor-
relation coefficients larger than this parameter were taken for
modeling (Figure 2b). The procedure was repeated for different
cutting-off criteria, and the optimum was the one that gave the
model its best predictive ability (Figure 2c).

The DWS consists of neglecting small values in the weights
vector w during the factors extraction step in the PLS algorithm.
In this case, various cutoff criteria are tested and the one that
gives the best RMSEP value is kept. This approach can be
geometrically interpreted as a rotation of the regression vector
toward the solution with the best fitting.19

The SPA aims to find variables that are more orthogonal
among themselves by finding the ones that give vectors with the(34) Isakson, T.; Naes, T. Appl. Spectrosc. 1988, 42, 1273-1286.
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Figure 1. Leverage vs studentized residuals chart. The horizontal
lines represent limiting studentized residuals with 95% significance
while the vertical line represents a critical leverage value. The three
highlighted spectra are from the same sample and were removed as
outliers for the construction of the final model.

hi ) 1
N

+ (xi - xj)(XTX)-1(xi - xj)T (1)

Lresci ) x (yi - ŷi)
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highest norms when projected in orthogonal spaces. The variable
for starting the projections, as well as the optimum number of
variables to extract from the original set of wavenumbers, are
systematically determined for each property.40

In the splitting approach, which might be understood as a
particular case of the intermediate PLS algorithm (iPLS),41 the
spectra were divided into three equal regions and calibrations
performed in each one as well as in combinations of them. Region
one ranged from 4000 to 6000 cm-1, region two from 6000 to 8000
cm-1, and region three from 8000 to 10 000 cm-1. Notice that each
region accounts for a feature of the spectrasone peak or one peak
and a shoulder (Figure 3).

All the calculations were performed in the Matlab Software v.
6.1 (The MathWorks, Co., Natick, MA) using routines imple-
mented by the authors. The results were compared with those
given by the chemometric software NirCal v. 4.2142 supplied with
the NIR instrument. As similar results were obtained, herein only
Matlab results will be presented.

RESULS AND DISCUSSION
Figure 4a shows the 126 original spectra collected for the 42

samples of tomato products. Considerable noise is present in the
regions between 4000 and 5500 and 6300-7100 cm-1. The spectra
were quite homogeneous, and no outliers were identified a priori
by visual inspection.

Consistent baseline offsets and bias were present. These are
quite common features in NIR spectra acquired by diffuse
reflectance techniques.20,43 Nevertheless, it was observed that the
offset showed some correlation with the amount of water present
in the samples: the higher the sample’s moisture, the higher its
spectral offset. This might be due to the summation of (a)
differences in the path length of the infrared radiation because
the reduced presence of particulate material allowed the light to
penetrate deeper into the bulk sample and (b) due to differences
in the scatter profile of the samples and the reference during the
reflectance measurements.

Noise and systematic behavior are undesirable features in the
spectra. To solve this, the original spectra were preprocessed by
a mean smoother (noise and variable number reduction, Figure

(41) Lindgren, F.; et al. J. Chemom. 1994, 8, 349-363.
(42) Büchi Labortechnik. Büchi Nirlab Chemometrics Software Manual; supplied

together with NIRLab N-200 and NirCal Software.
(43) Olinger, J. M.; Griffiths, P. R. Appl. Spectrosc. 1993, 47, 695-701.

Figure 2. Example of cutting-off procedure for variable selection
based on the correlation coefficient. (a) Variables with absolute
correlation coefficient smaller than 0.8 (cutoff) are neglected and thus
(b) only wavenumbers within the dark regions were used in the
calibration model. (c) RMSEP vs cutoff chart. The best cutoff criterion
in this example would be 0.7.

Figure 3. Split spectra as variable selection method for calibration.
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4b), followed by MSC (offset reduction, Figure 4c), or second
derivative (offset and bias removal, Figure 4d).

It can be seen that the smoothing window chosen did not
eliminate any important feature of the spectra, and thus, all the
relevant chemical information was retained for modeling. The
number of variables was also reduced from 1557 to 97 wavenum-
bers. It is also noticeable that the second-derivative preprocessing,
despite removing bias in the baseline, has inserted considerable
noise to the spectra, a feature that, as will be seen, resulted in
poor calibration models.

The preprocessed full spectra (no variable selection) were
submitted to the PLS-1 calibration for total solids, soluble solids,

lycopene, and â-carotene. Table 1 shows the results.
Reasonable models were obtained by using the full spectra.

However, the best models were mostly given by the MSC-
processed spectra (odd models), the only exception being model
2 which is a more complex model. This effect is probably due to
the differences in the signal-to-noise ratio on both preprocessing
procedures.

PLS calibrations were also performed after the application of
the variable selection approaches stated above. Table 2 lists the
results for the splitting procedure.

Results using fragments of spectra presented better pre-
dictive abilities than their counterparts with full spectra, the

Figure 4. (a) Original spectra of the tomato products; (b) smoothed spectra by average, using a 15-points window. Preprocessed spectra by
(c) MSC and (d) second derivative after smoothing.

Table 1. Calibration Models for Tomato Properties Using the Preprocessed, Full Spectra

property model no. pretreatment factors RMSEP rval outliers

total solids (%) 1 MSC 10 1.0652 0.9989 1
2 2nd derivative 13 0.9552 0.9991 0

soluble solids (° Brix) 3 MSC 10 0.5827 0.9996 1
4 2nd derivative 13 0.9530 0.9989 0

lycopene (mg kg-1) 5 MSC 8 36.9868 0.9991 1
6 2nd derivative 14 44.9693 0.9986 1

â-carotene (mg kg-1) 7 MSC 5 0.7296 0.9981 3
8 2nd derivative 12 1.9113 0.9867 0
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only exception being â-carotene. For this property, model 7 has
shown better prediction for the external samples than model 15.
Besides, second-derivative preprocessing stills presents no good
models.

The other selection procedures outlined above presented
models with no better predictive abilities than those given by the
splitting approach. The DWS procedure presented models with
exactly the same features as the ones obtained without its use.
Indeed, the regression vectors presented quite subtle changes.
As this procedure can be seen as a rotation of the regression
vector toward the direction of best fitting, it can be concluded

that the solutions of Table 1 were already oriented or quite close
to this direction.

With the SPA, better models were not found probably because
this method is based on the search of variables that are more
orthogonal among themselves as possible, but they do not neces-
sarily have the best correlation with the property of interest.

Regarding the correlograms, good models, but not better
than the ones given by the splitting approach, were obtained only
with cutoff parameters such as 0.2 or 0.4. As the cutoff parameter
gets smaller, the models tend to the ones obtained with the full
spectra.

Table 2. Calibration Models for Tomato Properties Using the Spectra Splitting approach

property mode no. pretreatment regions factors RMSEP rval

total solids (%) 9 MSC 1 and 3 10 0.4157 0.9998
10 2nd derivative 2 13 0.8829 0.9992

soluble solids (° Brix) 11 MSC 2 and 3 11 0.6333 0.9996
12 2nd derivative 2 and 3 13 0.8634 0.9991

lycopene (mg kg-1) 13 MSC 1 and 2 5 21.5779 0.9996
14 2nd derivative 2 5 38.0153 0.9987

â-carotene (mg kg-1) 15 MSC 1 and 2 5 0.7455 0.9981
16 2nd derivative 1 6 1.5878 0.9907

Figure 5. True vs predicted values for (a) total solids (model 9), (b) soluble solids (model 11), (c) lycopene (model 13), and (d) â-carotene
(model 7) obtained by the best calibration models. Black open dots represent calibration spectra and solid dots represent the external validation
spectra.
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Once the best models were found, the absolute and relative
errors for the five prediction samples were calculated (Table 3).
The average values of prediction for each of the three individual
spectra were taken per sample.

Absolute and relative errors are within the acceptable experi-
mental ranges for each property; they are also comparable to those
presented by the reference methods.

Figure 5 brings the measured versus predicted charts for each
property. The diagonal line represents ideal results (predicted )
measured value) and so the closer the points are to this, the best
is the model. Black open circles represent calibration spectra and
solid circles represent validation spectra.

CONCLUSIONS
Calibration models relating spectral characteristics of samples

from tomato products with chemical composition, regarding solids
and carotenoids, were successfully built using relatively simple
models and variable selection techniques.

Multiplicative signal correction was the most effective prepro-
cessing technique in the sense that it produced all the best models
for calibrating tomato properties. Splitting the spectra into three
distinct regions, a quite simple approach when compared to the
other techniques exploited, presented optimum calibration models
for most of the properties, the only exception being â-carotene.

The models here presented are already in use at Unilever
Brazil and performing quite well. As a good laboratory practice,
regular evaluations of its performance are being conducted. No
adjustments were necessary.

In the future, these models can be expanded to include raw
tomatoes, enabling them to be applied to breeding programs for
speeding up the development of new high-solids or high-caro-
tenoids varieties.
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Table 3. Best Models Absolute and Relative Errors for
the Validation Samples for Each Property

property
model

no.
sample

no.
true

value
pred
value

ab
error

%
error

total solids (%) 9 1 7.74 7.78 -0.04 0.57
2 16.80 17.18 -0.50 3.00
3 22.40 21.81 0.58 2.63
4 19.06 18.63 0.42 2.24
5 27.10 27.13 -0.03 0.11

soluble solids (° Brix) 11 1 7.3 7.9 -0.6 7.76
2 15.4 16.6 -1.2 7.61
3 28.3 28.2 0.1 0.27
4 18.7 18.7 0.0 0.17
5 25.0 25.3 -0.3 1.11

lycopene (mg kg-1) 13 1 144 135 9 6.45
2 602 608 -6 1.03
3 601 596 5 0.75
4 779 734 44 5.69
5 921 916 5 0.49

â-carotene (mg kg-1) 7 1 5.1 5.0 0.1 1.50
2 11.1 11.4 -0.3 3.11
3 11.0 11.1 -0.1 0.93
4 10.3 10.8 -0.5 4.79
5 17.5 16.3 1.19 6.83
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