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Multiway Calibration for Creatinine Determination in
Human Serum Using the Jaffé Reaction
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Second-order calibration and multivariate spectroscopic-kinetic
measurements in the visible region are proposed to improve the
Jaffé method for creatinine assay. Analyses performed on synthetic
mixtures containing bilirubin, glucose, and albumin con� rm that
second-order calibration is useful for creatinine determination in
human serum. Quantitative determinations of creatinine with the
parallel factor analysis (PARAFAC) and direct trilinear decompo-
sition (TLD) methods were compared. It is shown that both methods
can be used for creatinine determination in human serum, with an
SEP (squared error of prediction) of 2.22 and coef� cient of vari-
ability of 6.14% for PARAFAC, and an SEP of 2.38 and coef� cient
of variability of 6.57% for TLD.

Index Headings: Second-order calibration; Parallel factor anaylsis;
PARAFAC; Creatinine assay; Jaffé reaction.

INTRODUCTION

In hospital laboratories, creatinine determination is
generally performed using the Jaffé reaction. This is
based on the reaction that takes place in an alkaline me-
dium between creatinine and picric acid to form an or-
ange-red compound, which can be measured spectropho-
tometrically at 500 nm. Unfortunately, the Jaffé reaction
exhibits low speci� city for creatinine determination due
to side-reactions that take place between picric acid and
other species present in human serum, such as glucose,
proteins, bilirubin, and a-ketoacids. Many procedures
have been proposed to improve the speci� city of the Jaffé
reaction, including adsorption with Fuller’s earth,1 ex-
traction,2 and dialysis.3 There also exist alternative meth-
ods, such as 3–5 dinitrobenzoate reagent,4 liquid chro-
matography,5 and enzymic reactions.6,7 However, the au-
tomated kinetic method based on the Jaffé reaction is the
most popular means of improving creatinine assay. In
fact, this is the method generally used in clinical routine
practice, although it is not free of interference.8–10

Kinetic methods generally use a � xed two-point or
� xed single-point method for quantitative analyses.10

Nevertheless, with advances in instrumentation for si-
multaneous multivariate detection, such as diode array
spectrophotometers, multivariate kinetic methods can be
investigated with the goal of improving the speci� city of
creatinine assay.

Second-order calibration techniques have been dem-
onstrated to be powerful methods for extracting qualita-
tive and quantitative information from three-way data ar-
rays such as multivariate spectroscopic-kinetic measure-
ments with diode array spectrophotometers.11–13 The ad-
vantage of second-order calibration is that quantitative
analysis can be performed in the presence of unknown
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interferents (second-order advantage), because mathe-
matical methods like parallel factor anaylsis (PARAFAC)
or direct trilinear decompostion (TLD), used for second-
order calibration, are capable of resolving the underlying
pro� les and the relative concentrations of each compo-
nent in the system. Consequently, only a small number
of standards of the analyte are required for analysis.14

In this paper, a new modi� cation of the Jaffé method
is proposed for the determination of creatinine in human
serum. The methodology explores a multivariate kinetic-
spectroscopic three-way data set and three-way methods
for quantitative analysis. The results obtained show that
this methodology is effective for creatinine determination
in human serum in the presence of other substances that
can interfere with conventional methods based on the Jaf-
fé reaction.

THEORY

Notation. Boldface letters represent matrices (upper
case) and column vectors (lower case), such as X and x.
Underlined boldface uppercase letters, e.g., X , represent
multiway arrays. Scalars are represented by italic lower-
case letters, such as x and a. Transposition of a matrix is
symbolized by a superscripted ‘‘T’’, XT, and indices for
matrix and vector dimensions are indicated by italic low-
ercase letters, such as i, j, and k.

Trilinear Models. Multivariate kinetic monitoring of
the Jaffé reactions with diode array spectrophotometers
produces two-way data recorded in I wavelengths and J
time points for each sample. Since in chemical analysis
there are K samples consisting of calibration samples and
unknown mixture samples, an I 3 J 3 K three-way data
array X is obtained (Fig. 1). A trilinear model for three-
way data array has the form:

R

x 5 a b c 1 e (1)Oi jk ir jr kr i jk
r51

where x ijk is an element of X , with i 5 1, . . . I, j 5 1,
. . . J, and k 5 1, . . . K. R de� nes the number of com-
ponents for the three modes of X; a ir, b jr, and ckr are
elements of the vectors a r, b r, and c r, respectively; and
e ijk is an element of the residual array E. Vector a r is the
UV-Vis spectral pro� le for the r th component, b r is the
temporal concentration pro� le for the r th component, and
cr is the relative concentration for the r th component in
the K samples.

In matrix notation, Eq. 1 can be written as:

X 5 A (C ( B)T 1 E (2)

where ( denotes the Khatri–Rao product,15 and X and E
are I 3 JK matrices obtained by matricizing the three
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FIG. 1. Three-way array and trilinear models.

way array.16 A 5 (a1, a2, . . . , aR), B 5 (b1, b2, . . . , bR),
and C 5 (c1, c2, . . . , cR) denote the loadings that describe
the spectroscopic, kinetic, and sample modes, respective-
ly.

In three-way analysis, the X array is decomposed into
unique sets of factors that correspond to the pro� les of
the compounds in spectroscopic, kinetic, and sample
modes (Fig. 1). The most commonly used methods for
three-way analysis are PARAFAC and TLD.

PARAFAC uses an iterative algorithm called alternat-
ing least squares (ALS) to calculate A , B, and C .17 The
algorithm starts with an initial guess for B and C , and
then A is estimated by a least-squares procedure in which
the following function:

RSS 5 f (X , A , B , C ) 5 \ X 2 A(C ( B)T \ 2
F (3)

is minimized. Next, B and C are similarly updated. The
algorithm proceeds iteratively in cycling steps in which
A , B , and C are alternately updated until convergence is
reached. Convergence is achieved when the criterion in
Eq. 4 is satis� ed:

m m21RSS 2 RSS
# « (4)

m21) )RSS

where RSS is the residual sum of squares de� ned in Eq.
3 and m is the actual number of iterations.

If some properties of the pro� les in A , B , and C are
known, then this information can be included in PARA-
FAC models in the form of parameter constraints. For
example, a non-negativity constraint is usually used for
spectroscopic data18 because absorbance measurements
should be positive if a proper blank is used. Also, it is
possible to � x parameters when the pro� les are known
in advance.19 A constrained PARAFAC model can im-
prove the estimated loadings and help to ensure that they
have physical and chemical meaning. There are several
kinds of constraints that can be included in PARAFAC
models. A more detailed description and algorithms to
calculate constrained models can be found elsewhere in
the literature.17,20

Direct trilinear decomposition (TLD) estimates the pa-
rameters of the trilinear model using a non-iterative pro-
cedure based on the QZ algorithm by solving a general-
ized eigenvalue and eigenvector problem.21 TLD is faster
than PARAFAC, but the latter is usually preferable in
practice for its favorable statistic properties, such as es-
timation of parameters in the least-squares sense and the
possibility of including model constraints. Other methods
for � tting trilinear models can be found elsewhere in the
literature.22,23

Second-Order Calibration. Second-order calibration
as used in this work is composed of the following steps:
� rst, decomposition of the three-way data array X , con-

taining standard and unknown samples, is performed by
the PARAFAC or TLD method. Next, the vector column
c in matrix C related to the analyte of interest (creati-*r
nine) is identi� ed. The vector c containing the relative*r
concentrations of creatinine in the standard samples is
regressed against a vector c r (for creatinine) containing
the known concentration of standards. The equation de-
veloped by � tting c versus c r is used to predict the con-*r
centration of creatinine in the unknown sample.

To obtain a correct trilinear model, it is necessary to
determine the number of components in the model. The
method adopted in this paper is the core consistency di-
agnostic, as described by Bro and Kier.24 Visual inspec-
tion of the residuals and the calculation of the residual
sum of squares (RSS), de� ned in Eq. 3, was also used
for determining the number of components.

EXPERIMENTAL

Apparatus. Spectra were recorded using a diode array
spectrophotometer (model 8453A, Hewelett Packard,
Palo Alto, CA) equipped with a cell holder for temper-
ature control (set at 30 8C). Reagents and samples were
mixed manually in plastic cuvettes with a 10-mm path
length. The solution temperature was controlled by water
circulating from a constant-temperature water bath.

Data were recorded by an on-board computer and
transferred to a microcomputer equipped with an AMD
850 MHZ processor. All calculations were performed us-
ing the software MATLAB, version 6 (Mathworks, Na-
tick, MA).25 The PARAFAC programs were written in-
house. TLD and non-negativity constraint programs were
obtained from the N-Way Toolbox software, version
2.0.26

Reagents. All chemicals were of analytical-reagent
grade. Creatinine and albumin (Fraction V) were obtained
from Sigma. Bilirubin was from Acros Organics, and hy-
drochloridic acid, sodium hydroxide, and glucose were
from Merck. All aqueous solutions were prepared with
distilled and deionized water that was further puri� ed by
a Milli-Q high pure water device (Millipore, Bedford,
MA).

A creatinine 1 g L21 stock solution was prepared by
dissolving 0.1 g in 100 mL of 0.1 mol L21 of HCl so-
lution, and working standard solutions were made by
suitable dilution of the stock solution.

Working alkaline picrate reagents were prepared by
dissolving 0.75 mmol of picric acid in 25 mL of water
and 5 mL of 5 M NaOH solution, and then diluting to
50 mL with puri� ed water. Fresh solutions were prepared
daily.

A 200 mg L21 stock standard solution of bilirubin was
prepared by dissolving 20 mg of bilirubin in 1 mL of
dimethyl sulfoxide and 3 mL of a solution of 0.1 mol
L21 sodium carbonate, and then diluting to 100 mL. Syn-
thetic mixtures (see Table I) were prepared by dissolving
the reagents glucose and albumin in 5 mL of puri� ed
water from Milli-Q, adding bilirubin and creatinine in
suitable volumes from its stock solution, and then dilut-
ing to 10 mL with puri� ed water.

Determination of Creatinine in Synthetic Mixtures
and Human Serum. We added 0.5 mL of the synthetic
mixture or human serum or standard solution of creati-
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TABLE I. Concentrations of the synthetic mixtures. A total of 40
mixture samples were prepared. For each mixture set, creatinine
was prepared at 5 concentration levels (5, 15, 25, 35, 45 mg L21).

Set
Creatinine
(mg L21)

Albumin
(mg L21)

Bilirubin
(mg L21)

Glucose
(mg L21)

1
2
3
4
5
6
7
8

5–50
5–50
5–50
5–50
5–50
5–50
5–50
5–50

50 000
80 000
50 000
20 000
50 000
80 000
50 000
50 000

···
···
50
10
10
10
50
10

···
···
···

1000
1000
1000
1000
2000

FIG. 2. Variation of absorbance vs. time for standard solutions of cre-
atinine at a wavelength of 500 nm. Concentration levels correspond to
10, 20, 40, and 60 mg L21.

FIG. 3. Fit of the curve DA(180– 20 s) vs. concentration for creatinine stan-
dard solutions at wavelengths of 490, 500, 520, 540, and 560 nm.

nine to plastic cuvettes containing 1 mL of deionized
water. To this solution, 1 mL of alkaline picrate reagent
was added, so the � nal volume in the cuvette was always
2.5 mL.

The start of the reaction was taken as the time when
the last drop of the alkaline picrate reagent was added to
the cuvette. Acquisition of data started 20 s after the ini-
tiation of the reaction by recording the spectra from 450
to 600 nm at regular intervals of 1 nm and every 2 s up
to 300 s. Absorbances were measured against the reaction
mixture blank.

All solutions and reagents used in the experiments
were incubated for 30 min at 30 8C.

Reference Method for Creatinine Determination.
Six samples of human serum were analyzed in an auto-
matic analyzer Roche/Hitachi 917 in the clinical labora-
tory hospital that supplied the serum samples. Creatinine
concentration was determined by a kinetic two-point
method using rate-blanking and compensation.27 The
concentration of picric acid used was 25 mmol L21 and
sodium hydroxide was 200 mmol L21.

RESULTS AND DISCUSSION

The Jaffé reaction is well known, and there are differ-
ent methodologies based on the kinetic method.10 Usu-
ally, these methods use a concentration of picric acid be-
tween 5 and 30 mmol L21 and a hydroxide concentration
of up to 0.5 mol L21. Under these conditions, picric acid
is in excess and the kinetic behavior of creatinine is pseu-
do-� rst order.

Figure 2 shows the variation of the absorbance versus
time at 500 nm for the set of standard solutions of the
creatinine under the conditions used in this work. The
concentration of picric acid is 6 mmol L21 and that of
sodium hydroxide is 200 mmol L21. The temperature of
reaction and reagents is maintained at 30 8C. The mech-
anism of the pseudo-� rst order for creatinine reaction was
con� rmed by the initial rates method.28 The kinetic con-
stant was determined by a nonlinear least-squares � t of
the absorbance curves using a kinetic � rst-order function.
The mean value obtained for 5 replicates of the standard
solutions at concentration levels of 10, 20, 40, and 60 mg
L21 was 6.2 3 1023 s21, except for 60 mg L21, at which
a mean value of 6.4 3 1023 s21 was obtained. The ab-
sorbance varies linearly with creatinine concentration in
the range investigated. Figure 3 shows the linear � t for
different wavelengths (490, 500, 520, 540, and 560 nm),
where DA is the difference between absorbances mea-
sured at � xed times (20 s and 180 s).

The results obtained for the experimental conditions
chosen for this work are in good agreement with previous
works in the literature,29 con� rming that these experi-
mental conditions are appropriate for creatinine deter-
mination in human serum.

Creatinine Determination in Synthetic Mixtures.
Quantitative experiments were carried out using the syn-
thetic mixtures given in Table I. For each set of mixtures
in Table I, � ve samples containing different levels of con-
centration for creatinine over the range 5–50 mg L21 were
prepared. A total of 40 samples were prepared. Albumin,
bilirubin, and glucose are endogenous substances present
in human serum and can interfere with creatinine deter-
mination based on the Jaffé reaction at the concentrations
used.10 It is assumed that these substances interfere only
in the spectral measurement. Later we will show that high
concentrations of albumin can affect the kinetic constant
for the creatinine–picric acid reaction, introducing small
deviations from the trilinear structure. Nevertheless, the
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FIG. 4. Experimental data for a representative mixture sample.

FIG. 5. Core consistency diagnostic for binary (upper two plots) and
quaternary mixtures (lower two plots). (Left) Result for a model with
two components. (Right) Result for a model with three components.

TABLE II. RMSEP values calculated with 5 levels (5, 15, 25, 35,
45 mg L21) of the creatinine concentration on synthetic mixtures.

Set TLD PARAFAC Const. PARAFAC

1
2
3
4
5
6
7
8

0.53
0.80
0.52
0.41
0.50
0.53
0.55
0.47

0.53
0.78
0.48
0.40
0.49
0.55
0.50
0.47

0.36
0.44
0.52
0.15
0.26
0.56
0.77
0.38

TABLE III. Predictions from creatinine concentration levels in hu-
man serum samples using different three-way methods. Concentra-
tions are in mg L21.

Sample Reference TLD PARAFAC
Const.

PARAFAC

1a

2a

3a

4a

5b

6a

7.30
74.00
9.80

16.90
97.20
11.90

5.89
76.04
7.47

15.64
100.12
10.86

6.04
77.14
7.60

16.24
99.82
10.82

7.10
79.18
8.02

16.00
97.60
10.96

a Two component models.
b Three component models.

prediction errors obtained with trilinear models are ac-
ceptable for creatinine determination in human serum.

The analysis of each sample from Table I was per-
formed using an X array consisting of three standard so-
lutions of pure creatinine with concentrations of 10, 20,
and 40 mg L21 and the sample itself. The dimension of
the X array was 122 3 139 3 4, where the respective
modes are wavelengths with regular intervals of 1 nm
over the range 480–600 nm; time, with regular intervals
of 2 s between 20 and 300 s; and samples. Figure 4 shows
a three-dimensional plot for one of the samples of set 4
in Table I.

Decomposition of X in trilinear models was performed
by the TLD or PARAFAC method (constrained and un-
constrained models). PARAFAC was initiated with ran-
dom values to check the convergence of the model from
different starting points. The loadings of the TLD model
were also tested for initialization, and the results were
similar to the initialization with random values. The con-
vergence criterion used for all experiments was set to
1026. In the constrained PARAFAC model, the values for
the estimated concentrations of the interferents (matrix
C , Eq. 2) in the standard samples were � xed to zero
because only creatinine is present in standard solutions.

Figure 5 shows a typical result from the core consis-
tency diagnostic used to determine the number of com-
ponents in the PARAFAC models for binary and quater-
nary mixtures. For binary mixtures, a model with two
components is expected because both creatinine and al-

bumin react with the alkaline picrate reagent and form
compounds that absorb in the visible region of the anal-
ysis. Bilirubin does not react with alkaline picrate reagent
but does absorb in the wavelength region analyzed, and
the probable number of components for ternary and qua-
ternary mixtures is three. For glucose, spectral absor-
bance was not observed in the visible region analyzed,
but this substance can interfere with creatinine determi-
nation because the background color of alkaline picrate
reagent decreases due to the reduction of the picrate to a
stable, colorless intermediate.10 Nevertheless, the core
consistency diagnostic shows the same behavior for the
binary and quaternary mixtures as shown in Fig. 5 and
it suggests a model with two components for both sam-
ples.

Further analysis of the number of components for TLD
and PARAFAC models was performed by residual sum
of the squares (RSS, Eq. 3) and by a visual examination
of the residuals (E). It was observed that the models with
three components have a residual sum of squares smaller
than those with two components. However, it was found
that two-component models are more suitable than those
with three or more components because in the latter the
pro� les for creatinine are poorly estimated. Moreover, the
residuals for both models (two or three components) are
randomly distributed, which indicates that two compo-
nents are indeed appropriate for modeling the data.
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FIG. 6. Comparison of the pure spectral and kinetic pro� les of creat-
inine with the estimated loadings for a two-component PARAFAC
model.

FIG. 7. Spectral pro� les: (a) albumin 50 g L21, (b) bilirubin 10 mg
L21.

In fact, models with three or more components are dif-
� cult to � t by PARAFAC methods because many itera-
tions (more than 2500) are necessary in the ALS algo-
rithm, and in several cases, convergence is not achieved
until 5000 iterations. Also, it was observed that the load-
ings for three-component PARAFAC models are highly
correlated in the kinetic and spectral modes and degen-
erate solutions were obtained. On the other hand, when
using two components, the ALS algorithm usually con-
verged after approximately 600 iterations for the uncon-
strained and before 200 iterations for the constrained
PARAFAC model.

For all samples, good predictions were obtained with
two-component models and the estimated loadings,
which represent the pure spectral and kinetic pro� les of
the creatinine, are in accordance with the pure pro� les.
An example for a generic sample (from set 7, Table I) is
shown in Fig. 6. The estimated pro� le for the second
component is probably due to the combined contributions
of albumin and bilirubin, between which it was not pos-
sible to distinguish. These two compounds exhibit very
similar spectra in the wavelength range considered (Fig.

7). Furthermore, it was observed that the kinetic pro� les
for the second component vary slightly from experiment
to experiment due to changes in the mixture composition.

The errors of prediction (RMSEP), calculated accord-
ing Eq. 6 for two-component models, are excellent for
both the TLD and PARAFAC models, as shown in Table
II:

1 / 22æ ö(c 2 ĉ )Oç ÷i i
ç ÷RMSEP 5 (6)ç ÷

Nè ø

where c i is the true concentration of creatinine in sample
I, and ĉ i is the estimated concentration value. N is the
number of samples (� ve for each set shown in Table I).

The errors of prediction are not the same for the dif-
ferent mixtures in Table I, and this is in� uenced by com-
position. The errors increase for higher concentrations of
albumin because the kinetic constants of creatinine
change slightly with a high concentration level of albu-
min. A PARAFAC model was � tted with a three-way
array formed by the � ve samples of set 1 (Table I). The
estimated kinetic constant for creatinine reaction with pi-
cric acid in this model was 6.4 3 1023, which is close to
the constant for standard solutions of creatinine. How-
ever, for the � ve samples of set 2 (Table I), the estimated
constant is 7.3 3 1023. In this situation, the kinetic pro-
� les of creatinine are slightly different between the stan-
dard samples and mixtures, indicating that the data de-
viate from the trilinear structure. However, this error is
considered to be small and acceptable for creatinine de-
termination in serum. The best prediction results were
obtained by the PARAFAC constrained models, except
in set 7, for which the prediction error was surprisingly
high.

Creatinine Determination on Human Serum. Six
samples of human serum were used for creatinine deter-
mination using second-order calibration. The analysis
was performed exactly as for the synthetic mixtures. The
results of the proposed method are compared with those
from the clinical laboratory in the hospital that supplied
the serum samples. The hospital laboratory used an au-
tomated kinetic method based on the Jaffé reaction.

Except for sample 5, all other samples were � t with
trilinear models with two components. The estimated
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FIG. 8. Spectral and kinetic pro� les estimated with (a) a two-compo-
nent PARAFAC model and (b) a three-component PARAFAC model
for the analysis of sample 5 of the human serum.

TABLE IV. Statistical parameters for predictions in Table III.

TLD PARAFAC
Const.

PARAFAC

SEP
CV

2.38
6.57

2.22
6.14

2.51
6.92

loadings were in excellent agreement with both the pure
spectral and kinetic pro� les for creatinine. Good predic-
tions were obtained for these samples (Table III). For
sample 5, models with both two and three components
presented highly correlated loadings, but for this sample
it was found that models with three components gave
better estimates than those with two components. Figure
8 shows a comparison between the loadings from two-
and three-component PARAFAC models with the true
spectral and kinetic pro� les of creatinine. Table III shows
the prediction for concentration of creatinine in sample 5
using models with three components.

Sample 5 has a creatinine concentration that is much
higher than the usual value in human serum, which can
indicate a possible renal failure. In this situation, it is
likely that others substances are also present in high con-
centrations and in this case, the third component tries to
model some interferent compound that probably reacted
with picric acid. However, the identity of the third com-
ponent is not known.

The error of prediction (SEP)30 and the coef� cient of
variability (CV)30 indicated in Table IV for both three-
way methods are reasonable for creatinine determination
in human serum. In clinical analysis, a 10% error is ac-
ceptable for creatinine determination by the kinetic Jaffé
method.

The unconstrained PARAFAC model gave a lower er-
ror of prediction, contrary to the results obtained for the
synthetic mixtures, but in this case the error was calcu-
lated using the concentrations predicted by the kinetic
Jaffé method and not the true concentrations, as in the
synthetic mixtures. Although the PARAFAC model gave
a lower error of prediction, this is not necessarily the best
model for creatinine determination because TLD is com-
putationally faster than PARAFAC and could be more
appropriate for routine analyses that require a large num-
ber of assays to be performed in a short time.

CONCLUSION

Second-order calibration is an appropriate method for
creatinine assay based on the Jaffé reaction because it
allows quanti� cation even when there are unknown sub-
stances present in human serum that interfere with cre-
atinine analysis.

Further developments are necessary to the automatic
determination of the optimum number of components for
the three-way models. Another possibility would be to
use the recently developed methods for three-way anal-
ysis that are insensitive to the number of factors included
in the model. These methods are under investigation in
our laboratory. Furthermore, it was found that the com-
position of the samples affects the errors of prediction
due to deviations from a trilinear structure in the data.
Problems with deviations of the trilinearity are more dif-
� cult to handle with the mathematical methods available,
but the proposed experimental methodology could be
modi� ed to perform a standard addition methodology to
minimize the deviations due to the effect of the sample
composition.
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