

Journal of Molecular Structure (Theochem) 663 (2003) 109-126

www.elsevier.com/locate/theochem

QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons

Fabiana Alves de Lima Ribeiro, Márcia Miguel Castro Ferreira*

Laboratório de Quimiometria Teórica e Aplicada, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil

Received 17 February 2003; accepted 15 August 2003

Abstract

A Quantitative Structure–Property Relationship (QSPR) analysis and study of polycyclic aromatic hydrocarbons (PAHs) is presented. Three physicochemical properties related to their environmental impact are studied: boiling point (bp), octanol– water partition coefficient (log K_{ow}) and retention time index (RI) for reversed-phase liquid chromatography analysis. The geometry of all PAHs were optimized by the semi-empirical method AM1 and used to calculate thermodynamic, electronic, steric and topological descriptors: HOMO and LUMO energies and the GAP between them, molecular hardness, polarizability, atomic charges, connectivity index, volume and surface area among others. After variable selection, principal component regression (PCR) and partial least squares (PLS) with leave-one-out crossvalidation were used for building the regression models.

The regression coefficients obtained for the models were 0.995 (PCR and PLS) for bp, 0.975 (PCR) and 0.976 (PLS) for log K_{ow} , and 0.898 (PCR and PLS) for RI. Finally, the models were used to predict these properties for those compounds for which experimental measurements are still unknown.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Polycyclic aromatic hydrocarbons; Principal component regression; Partial least squares; Molecular descriptors; AM1; WHIM-3D; Physicochemical properties

1. Introduction

There are currently more than 50 million known chemical compounds and the chemical industry produces tons of synthetic compounds annually. Since the industrial revolution, increasing amount of chemical products and waste materials of all kinds are being released into the environment either during production, storage, transport or disposal. Once in the environment, they frequently interfere with naturally occurring chemical reactions and cycles. Some of them have received enormous attention in the last decades due to their toxicity, bioaccumulation and persistence in the environment [1]. Their existence promotes important changes in the planet's life, originating a process with two totally opposite consequences. On one hand allowing an exceptional human standard of life, but on the other hand leading to several environmental degradation processes that can result in serious consequences for the ecosystem

^{*} Corresponding author. Tel.: +55-19-3788-3102; fax: +55-19-3788-3023.

E-mail address: marcia@iqm.unicamp.br (M.M.C. Ferreira).

^{0166-1280/}\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.theochem.2003.08.107

and, ultimately, for life on the planet. To understand and evaluate the environmental impact of chemicals, it is necessary to have information about the chemical, biochemical and photochemical processes that generate or consume these products, their transport, adsorption, persistence and metabolism within living organisms. This context emerges the field of environmental chemistry, that encompasses their chemical reactions, and how they can contaminate the air, water, soil and sediment, and the treatment of residues generated from the innumerable industrial processes used to sustain the actual human standard of life. The effect of these chemicals in the environment depends mainly upon two factors [1]: (a) environmental conditions such as temperature, flux and accumulation of air, water and solid matter, and sediment composition; (b) the physicochemical properties of pollutants, which will influence the way these compounds disperse or accumulate in the environment. Due to the complexity of these factors, the present level of knowledge in this area is not very high and there is an essential need for study and research to gain a deeper understanding of the effects of pollutants and their chemistry.

110

A powerful tool to help in this task is chemometrics, which uses statistical and mathematical methods to extract maximum of information from a data set. Its usefulness relies on the fact that the complex interactive processes in the environment are per se multidimensional. Quantitative structure-activity and structure-property relationships (QSAR/QSPR) use chemometric methods to describe how a given biological activity or a physicochemical property varies as a function of molecular descriptors describing the chemical structure of the molecule. Thus, it is possible to replace costly biological tests or experiments of a given physicochemical property (especially when involving hazardous and toxically risky materials or unstable compounds) with calculated descriptors, which can in turn be used to predict the responses of interest for new compounds [2]. Chemometrics has provided new insight into the philosophy and theory behind QSAR/QSPR modeling. It has been used to estimate properties such as density [3], boiling point (bp) [4,5], solubility, octanol-water partition coefficient, Henry's law constant [6-8], vapor pressure [9] and toxicity of chemicals [7,9-13], for a series of analogue compounds such as polychlorinated biphenyls, dibenzofuranes, chlorobenzenes, polychlorinated dioxins, polycyclic aromatic hydrocarbons (PAHs), fatty acids, etc.

The aim of this work is to obtain QSPR of three physicochemical properties: bp, octanol-water partition coefficient (log K_{ow} or log P), and retention time index (RI) for reversed-phase liquid chromatography (LC) analysis, for a set of 67 non-substituted fused PAHs, a special class of chemicals that has been of concern to the scientific community due to their pollutant potential. PAHs are found in both urban and rural areas, due to the burning of wood and coal, exhaust of gasoline and diesel from combustion engines, the smoking of tobacco, and other combustion processes in which the carbon fuel is not completely converted to CO or CO₂. They are produced by saturated hydrocarbons under oxygen deficient conditions, by degradation or incomplete combustion of organic materials. Under these conditions, hydrogen consumption is favored, and the exceeding carbon atoms will be arranged in the most thermodynamically favorable way consisting of condensed aromatic rings [14].

The production of PAHs generates a variety of compounds with similar structures and properties. One of the analytical methods for isomer separation is reversed-phase LC on stationary phases chemically modified with octadecilsilane. This technique has been successfully used to resolve complex mixtures of PAHs [15]. The authors utilized the log *I* (RI) to study the selectivity of LC. This index is calculated by Eq. (1), where *x* refers to the solute, *n* and *n* + 1 the minor and major standards of elution, and *R* represent the corrected elution volume. For the index calculation, the following standard values are assumed: benzene = 1; naphthalene = 2; phenanthrene = 3; benz[*a*]anthracene = 4; benzo[*b*]chrysene = 5; dibenzo[*b.def*]chrysene = 6

$$\log I_x = \log I_n + \frac{\log R_x - \log R_n}{\log R_{(n+1)} - \log R_n}$$
(1)

PAHs are well known for their mutagenic and carcinogenic characteristics. In general, a larger number of condensed rings usually exhibit greater environmental significance because most of them are carcinogenic and extremely resistant to enzymatic degradation [14,16].

On natural bodies of water, PAHs can contaminate water as well as sediment, depending on their hydrophobicity. The most hydrophobic PAHs have the tendency to adhere to sediment, or biological tissues from aquatic living organisms, while those not so hydrophobic have the tendency to solubilize in an aqueous phase [1,6]. The hydrophobicity is expressed by the octanol-water partition coefficient (K_{ow}), which estimates the solubility in both aqueous and organic phases (in general *n*-octanol is used) according to Eq. (2)

$$K_{\rm ow} = \frac{C_{\rm org}}{C_{\rm aq}} \tag{2}$$

Since values of K_{ow} may vary by several orders of magnitude, it is usually expressed in the logarithmic form [2].

The log K_{ow} is essential for understanding the transport mechanisms and distribution of compounds into the environment, for example, the mechanism that involves drug absorption by transport through a biological membrane, or the process involving the deposition of a pollutant into bodies of water. The contamination of soil by PAHs takes place mainly by atmospheric deposition and by sewage water or sewage sludge, and the transport of these compounds occurs by diffusion. Consequently, the soil permanence is very much related to water solubility of each compound [17,18].

Human contamination takes place mainly by inhalation of contaminated particles, cutaneous absorption, or orally through contaminated food. The chemicals adhered to particles are partly dissolved in the lung and metabolized there. The metabolites can act on cells, or can be taken into the blood and liver, or can be excreted unchanged. The majority of these compounds tend to bioaccumulate, and only a small fraction of them is eliminated by urine, either in the metabolized or original form [14,19].

2. Methodology

Data set. In this work, a set of 67 non-substituted PAHs containing from 2 to 7 fused rings with five and six carbon atoms were studied. Their chemical structures are listed in Fig. 1.

Experimental values of bp were taken from the work of Karcher et al. [20], for the octanol-water partition coefficient they were taken from the handbook by Mackay et al. [1] and for RI from the work of Sander and Wise [15]. They are listed in Table 1, together with the values predicted by the principal component regression (PCR) and partial least squares (PLS) models.

111

Descriptors calculations. Firstly, the geometry of all molecules was optimized and the electronic and steric descriptors were calculated using the semiempirical method AM1 [21] implemented in the Spartan software [22]. These descriptors are: volume, surface area and molecular ovality [23,24], atomic charges, dipole moment, frontier orbitals energies— HOMO and LUMO energies and their GAP, molecular electronegativity, molecular hardness and polarizability [25–28].

The topological descriptors [29,30] were calculated by the WHIM-3D program [31]. These descriptors contain information about the whole molecule in terms of size, shape, symmetry and atom distribution. These indices are calculated from the cartesian (x, y, z) coordinates of a molecule within different weighting schemes in a straightforward manner.

Variable selection. The data matrix $X(n \times m)$ with n = 67 rows and m = 168 columns corresponds, respectively, to the number of molecules investigated and molecular descriptors calculated. This diversity of molecular descriptors was evaluated in order to find those that provide the best regression model for bp, $\log K_{ow}$ and RI. The physicochemical properties are, in general, intrinsically multidimensional. Therefore, the use of just one molecular descriptor would not be sufficient to supply all the necessary information to describe the data set. Some descriptors give valuable information about the influence of electronic, others about geometrical or topological, and others about hydrophobic features upon bp, $\log K_{ow}$ and RI. In this work, the molecular descriptors were selected in such a way that they represent the features necessary to quantify these physicochemical properties. The correlation of all 168 descriptors with a given molecular property was calculated and those with small or no correlation (smaller than a given cut-off) to any of the physicochemical properties were discarded. Among those highly correlated to themselves, the ones that can be most easily interpreted were selected. The data

Fig. 1. Chemical structures of PAHs used in this work.

set was reduced to 10 descriptors which are listed in Table 2, and their respective correlations with the properties of interest can be observed in Fig. 2.

Modeling and prediction. QSPR models for bp, log K_{ow} and RI were constructed by PCR and PLS methods [32–34] on autoscaled data and validated by leave-one-out crossvalidation. The best model

was selected to predict the properties for some PAHs for which the experimental values still are unknown. The statistical parameters used to assess the quality of the models are the Prediction Error Sum of Squares (PRESS) of validation (Eq. (3)), the Standard Error of Validation (SEV) (Eq. (4)) and finally the standard and crossvalidated

F.A. de Lima Ribeiro, M.M.C. Ferreira / Journal of Molecular Structure (Theochem) 663 (2003) 109-124
--

Table 1 Experimental and predicted values for bp, $\log K_{ow}$ and RI

CAS name	bp	bp			$\log K_{\rm ow}$			RI		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
1 Naphthalene	218.00			3.37				2.28	2.28	
2 Anthracene	340.00			4.54			3.2			
3 Phenanthrene	338.00			4.57			3			
4 Naphthacene	440.00			5.76			4.51			
5 Benz[a]anthracene	435.00			5.91			4			
6 Chrysene	431.00			5.86			4.1			
7 Triphenylene	429.00			5.49			3.7			
8 Pyrene	393.00			5.18			3.58			
9 Benzo[c]phenanthrene		430.79	431.23		5.71	5.70	3.64			
10 Perylene	497.00			6.25			4.33			
11 Benzo[a]pyrene	496.00			6.04			4.53			
12 Benzo[<i>e</i>]pyrene	493.00				6.04	6.05	4.28			
13 Picene	519.00				6.77	6.74		4.51	4.51	
14 Pentaphene		534.13	534.38		6.77	6.76	4.67			
15 Benzo[b]chrysene		534.73	534.96		6.77	6.75	5			
16 Dibenz[a,h]anthracene	535.00			6.75			4.73			
17 Dibenz[<i>a</i> , <i>i</i>]anthracene	531.00				6.77	6.75	4.56			
18 Benzo[b]triphenylene	535.00				6.76	6.74	4.4			
19 Benzo[<i>c</i>]chrysene		535.25	535.46		6.77	6.74	4.45			
20 Pentacene		533.54	533.81		6.80	6.77		5.40	5.40	
21 Dibenzo[c,g]phenanthrene		535.54	535.73		6.76	6.74	4.07			
22 Benzo[<i>a</i>]naphthacene		534.12	534.36		6.77	6.76	4 99			
23 Dibenzo[<i>b def</i>]chrysene	596.00	001112	001100		>6.75	>6.75	6			
24 Dibenzo[<i>def mno</i>]chrysene	547.00				>6.75	6.53	5 08			
25 Dibenzo[<i>a i</i>]naphthacene	011100	638.97	638.96		>6.75	>6.75	2.00	5 77	5.76	
26 Dibenzo[<i>a</i>] haphthacene		638.98	638.97		>6.75	>6.75		5 75	5 75	
27 Dibenzo[$a c$]naphthacene		639.84	639.80		>6.75	>6.75		5.75	5 71	
28 Dibenzo[<i>el</i>]naphthacene		590.38	590.67		>6.75	>6.75		4 84	4 84	
29 Dibenzo[<i>de gr</i>]naphthacene		589.02	589 35		>6.75	>6.75	4 92	1.01	1.01	
30 Dibenzo[<i>a</i> , <i>n</i>]chrysene		640.90	640.82		>6.75	>6.75	4.72	5 36	5 36	
31 Banzolc Inicana		640.18	640.13		> 6.75	> 6.75		5.30	5.30	
32 Benzo[<i>abi</i>]pervlene	542.00	040.18	040.15	6 50	20.75	20.75	4 76	5.44	5.45	
33 Dibenzo[<i>b k</i>]chrysene	542.00	630 12	630 10	0.50	>675	>675	4.70	5.80	5 80	
34 Dibenzo[<i>cl</i>]chrysene		640.11	640.06		> 6.75	> 6.75		5.34	5 34	
35 Banzo[h]parulana		580.57	580.88		> 6.75	> 6.75	5.04	5.54	5.54	
26 Panzo[a]parylana		580.22	580.55		> 0.75	> 6.75	5.04	5 5 1	5 5 1	
27 Dibanzo[<i>da wu</i>]nanhthaaana		599.23	589.55		>0.73	>0.73		5.54	5.54	
28 Northal 22 a Johnward		588.70	569.10		> 6.75	> 6.75		5.05	5.05	
30 Panzo[<i>k</i>]pantaphana		620.85	620.80		>0.73	>0.73		5.40 5.24	5 22	
40 Banzal a mantagana		629.65	628 50		> 6.75	> 6.75		6.12	5.55	
40 Benzola Jpenacene	500.00	038.49	038.30	675	>0.75	20.75		0.15	0.12	
41 Coronene 42 North a [1, 2, 2, 4, d a () a horizonta	590.00			0.75	> (75	> (75	4.07	4.91	4.92	
42 Naphtho[1.2.3.4- <i>aef</i>]chrysene	592.00				> 6.75	>0.75	4.97			
43 Dibenzo[<i>def.p</i>]cnrysene	595.00				>6.75	>6.75	4.89			
44 Benzo[<i>rst</i>]pentaphene	594.00	525 70	525.07		>0.75	>0.75	5.73			
45 Benzo[g]cnrysene		535.78	535.97		0.70	0.74	4.27			
40 2.3:5.6-Dibenzophenanthrene		534./1	534.93		0.78	0.75	4.33			
4/ Naphtho[2.1.8-qra]naphthacene		588.41	588.76		>6.75	>6.75	5.87			
48 Dibenz[<i>a.e</i>]aceantrylene	050.00	587.31	587.70	4.00	>6./5	>6.75	4.9	0.07	a a -	
49 Acenaphthylene	270.00			4.00				2.86	2.85	

113

(continued on next page)

CAS name	bp			$\log K_{\rm ow}$			RI		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
50 Dibenzo[a.k]fluoranthene		587.03	587.43		>6.75	>6.75	4.9		
51 Naphtho[2.3-k]fluoranthene		586.55	586.96		>6.75	>6.75		5.11	5.11
52 Fluoranthene	383.00			5.22			3.37		
53 Dibenzo[k.mno]fluoranthene		539.48	539.31		6.54	6.56		4.53	4.53
54 1.2-Dihydroacenaphthylene	279.00			3.92				2.57	2.56
55 9H-fluorene	294.00			4.18			2.7		
56 Benzo[b]fluorene	398.00			5.75			3.84		
57 Benzo[c]fluorene	406.00				5.40	5.39	3.49		
58 Benzo[ghi]fluoranthene	422.00				5.49	5.51		3.78	3.78
59 Benzo[a]aceanthrylene		485.78	485.48		6.08	6.08	4.22		
60 Indeno[1.2.3.cd]pyrene	534.00				6.54	6.55	4.84		
61 Indeno[1.2.3-cd] fluoranthene	531.00				6.57	6.58	4.93		
62 Cyclopenta[cd]pyrene	439.00				5.40	5.43		4.12	4.13
63 Benzo[j]fluoranthene	480.00				6.07	6.07	4.24		
64 Benzo[k]fluoranthene	481.00			6.00			4.42		
65 Benzo[a]fluorene	403.00			5.40			3.72		
66 Dibenz[e.k]acephenanthrylene		641.67	641.79		>6.75	>6.75	5.27		
67 Benzo[b]fluoranthene	481.00			5.80			4.29		

Table 1 (continued)

114

(1) Bp experimental values, extracted from Ref. [20]; (2) bp predicted values by PLS model with two factors; (3) Bp predicted values by PCR model with three factors; (4) log K_{ow} experimental values, extracted from Ref. [1]; (5) log K_{ow} predicted values by PLS model with two factors; (6) log K_{ow} predicted values by PCR model with two factors; (7) RI experimental values, extracted from Ref. [15]; (8) RI predicted values by PLS model with two factors; (9) RI predicted values by PCR model with two factors.

correlation coefficients R^2 and Q^2 , given by Eqs. (5) and (6), respectively, [32,34–36]

$$PRESS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
(3)

$$SEV = \sqrt{\frac{PRESS}{n}}$$
(4)

$$R^{2} = 1 - \left(\frac{\text{PRESS}_{\text{cal}}}{\sum_{i=1}^{n} ((y_{i} - \bar{y})^{2})}\right)$$
(5)

$$Q^{2} = 1 - \left(\frac{\text{PRESS}}{\sum_{i=1}^{n} ((y_{i} - \bar{y})^{2})}\right)$$
(6)

In these equations, *n* is the number of compounds used for crossvalidation, y_i is the experimental value of the physicochemical property for the *i*th sample and \hat{y}_i is the value predicted by the model built

without sample *i*. PRESS_{cal} is the prediction error sum of squares for all samples included in the model. The models were built on autoscaled data and the classical QSPR regression equation can be obtained by the use of the scaled regression coefficients, mean and standard deviation of each original descriptor. The unscaling algorithm is presented in Appendix A. Multivariate data analysis was carried out by the software Pirouette 2.02 [37] and the PLS Toolbox [38] for MATLAB [39].

3. Results and discussion

3.1. Boiling point (bp)

The experimental data of 36 compounds listed in Table 1 were used to construct the regression models. From 10 molecular descriptors, three were chosen to model bp: volume (V), molecular weight (MW) and Randic connectivity index (R) [40,41]. The regression analysis on autoscaled data resulted in a correlation

F A de Lima Ribeiro	MMC Ferreira	/ Iournal of Molecular	Structure (The	ochem) 663 (20	(03) 109 - 126
i in de Elma Riberio,	mini.e. i circira i	o southat of motecular	Siluciale (The	<i>benem)</i> 005 (20	/05/10/ 120

Table 2 Molecular descriptors selected to construct the QSPR models

CAS name	E _{LUMO}	E _{HOMO}	GAP	Area	Volume	η	α	MW	R	Wiener
1 Naphthalene	-0.2650	- 8.7099	8.4449	159.0527	131.9503	4.2225	14.5141	128.18	6.812	109
2 Anthracene	-0.8417	- 8.1212	7.2795	206.4759	177.2617	3.6397	21.2966	178.24	9.38	279
3 Phenanthrene	-0.4085	- 8.6171	8.2086	203.1945	176.7936	4.1043	18.7282	178.24	9.38	271
4 Naphthacene	-1.2321	-7.7488	6.5167	253.8928	222.5818	3.2583	27.3665	228.3	11.949	569
5 Benz[a]anthracene	-0.8116	-8.2079	7.3963	250.6318	222.1094	3.6982	24.5932	228.3	11.949	553
6 Chrysene	-0.6762	- 8.3697	7.6935	246.9786	221.5272	3.8468	23.7076	228.3	11.949	545
7 Triphenylene	-0.4532	- 8.6584	8.2052	243.0391	220.8467	4.1026	22.3106	228.3	11.949	513
8 Pyrene	-0.9225	- 8.0692	7.1467	217.8428	193.5795	3.5733	23.0164	202.26	10.535	362
9 Benzo[c]phenanthrene	-0.6456	-8.4438	7.7982	245.6475	221.1480	3.8991	23.3918	228.3	11.949	529
10 Perylene	-1.1508	-7.8598	6.7090	258.7597	238.2124	3.3545	28.0041	252.32	13.104	654
11 Benzo[<i>a</i>]pyrene	-1.1142	-7.9173	6.8031	262.2384	238.6522	3.4015	27.7382	252.32	13.105	680
12 Benzo[<i>e</i>]pyrene	-0.8580	- 8.2149	7.3569	258.5826	238.0639	3.6784	26.0020	252.32	13.106	652
13 Picene	-0.7209	-8.3487	7.6278	290.8768	266.2941	3.8139	27.5208	278.36	14.518	963
14 Pentaphene	-0.8400	-8.2022	7.3622	298.0454	267.3996	3.6811	28.3664	278.36	14.519	979
15 Benzo[b]chrysene	-0.9948	-8.0511	7.0563	294.3653	266.8390	3.5281	29.2342	252.32	13.104	971
16 Dibenz[a.h]anthracene	-0.8041	-8.2570	7.4529	294.6701	266.9324	3.7264	28.0668	278.36	14.518	971
17 Dibenz[a.j]anthracene	-0.8736	- 8.1916	7.3180	294.3490	266.7377	3.6590	28.4418	278.36	14.519	955
18 Benzo[b]triphenylene	-0.8319	- 8.2255	7.3936	290.0115	266.0922	3.6968	28.1692	278.36	14.520	907
19 Benzo[c]chrysene	-0.6931	-8.3898	7.6967	291.2930	266.3563	3.8483	27.3357	278.36	14.521	931
20 Pentacene	-1.5500	-7.4414	5.8914	301.2299	267.9507	2.9457	33.2215	278.36	14.522	1011
21 Dibenzo[c.g]phenanthrene	-0.6732	-8.3498	7.6766	290.0853	266.0904	3.8383	27.3692	278.36	14.523	899
22 Benzo[a]naphthacene	-1.1857	-7.8407	6.6550	298.0321	267.4128	3.3275	30.5484	278.36	14.524	987
23 Dibenzo[b.def]chrysene	-1.3630	-7.6784	6.3154	306.1395	283.5631	3.1577	32.9926	302.38	15.673	1142
24 Dibenzo[def.mno]chrysene	-1.4067	-7.6315	6.2248	277.1642	255.5712	3.1124	31.0343	276.34	14.259	839
25 Dibenzo[a.j]naphthacene	-1.1349	-7.9321	6.7972	342.2179	312.2648	3.3986	33.7286	328.42	17.087	1581
26 Dibenzo[a.l]naphthacene	-1.1352	-7.9345	6.7993	342.1814	312.2526	3.3997	33.7210	328.42	17.087	1565
27 Dibenzo[a.c]naphthacene	-1.1564	-7.9148	6.7584	337.8583	311.4491	3.3792	33.7866	328.42	17.088	1485
28 Dibenzo[el]naphthacene	-0.8276	-8.2948	7.4672	298.4228	282.1115	3.7336	29.2572	302.38	15.673	1062
29 Dibenzo[de.gr]naphthacene	-0.8336	-8.2774	7.4438	306.0306	283.3872	3.7219	29.4276	302.38	15.674	1110
30 Dibenzo[g.p]chrysene	-0.8832	-8.1128	7.2296	329.5913	310.4633	3.6148	32.2504	352.44	18.242	1333
31 Benzo[c]picene	-0.8279	-8.2597	7.4318	334.5104	311.1329	3.7159	31.7127	328.42	17.087	1557
32 Benzo[ghi]perylene	-1.0662	-8.0235	6.9573	273.9605	255.1830	3.4786	28.5940	276.34	14.259	815
33 Dibenzo[b.k]chrysene	-1.1775	-7.8832	6.7057	341.7884	312.1273	3.3529	34.0111	328.42	17.087	1573
34 Dibenzo[cl]chrysene	-0.7827	-8.2649	7.4822	335.5407	311.1978	3.7411	31.5738	328.42	17.087	1461
35 Benzo[b]perylene	-1.1806	-7.8666	6.6860	302.4596	282.8705	3.3430	31.7015	302.38	15.673	1088
36 Benzo[a]perylene	-1.4836	-7.5284	6.0448	302.5047	283.1900	3.0224	33.9068	302.38	15.673	1068
37 Dibenzo[de.mn]naphthacene	-1.5482	-7.4305	5.8823	306.0786	283.6270	2.9411	34.5268	302.38	15.673	1122
38 Naphtho[2.3-g]chrysene	-0.9944	-8.1177	7.1233	332.3547	309.9723	3.5617	32.5293	328.42	17.087	1405
39 Benzo[h]pentaphene	-0.8089	-8.3009	7.4920	337.8917	311.4461	3.7460	31.5661	328.42	17.087	1445
40 Benzo[a]pentacene	-1.4685	-7.5763	6.1078	345.4223	312.7085	3.0539	36.0786	328.42	17.087	1605
41 Coronene	-1.0021	-8.1438	7.1417	289.2667	272.4353	3.5708	29.4287	300.36	15.413	1002
42 Naphtho[1.2.3.4-def]chrysene	-1.0583	-8.0233	6.9650	302.3366	282.8178	3.4825	30.8117	302.38	15.673	1082
43 Dibenzo[def.p]chrysene	-1.1022	-7.9553	6.8531	302.9476	282.8979	3.4265	31.1690	302.38	15.673	1066
44 Benzo[rst]pentaphene	-1.1838	-7.8650	6.6812	306.3398	283.4943	3.3406	31.7678	302.38	15.673	1142
45 Benzo[g]chrysene	-0.7660	-8.2705	7.5045	287.9205	265.8624	3.7522	27.8327	278.36	14.518	883
46 2.3:5.6-Dibenzophenanthrene	-0.9636	-8.0436	7.0800	294.6767	266.8634	3.5400	29.1636	278.36	14.518	939
47 Naphtho[2.1.8-qra]naphthacene	-1.3169	-7.7299	6.4130	309.6593	283.9536	3.2065	32.6929	302.38	15.673	1166
48 Dibenz[a.e]aceantrylene	-1.2806	-8.1423	6.8617	310.6715	284.9750	3.4309	31.3102	302.38	15.673	1090
49 Acenaphthylene	-0.9359	-8.9428	8.0069	175.2256	149.9876	4.0035	17.0668	152.20	7.966	166
50 Dibenzo[<i>a.k</i>]fluoranthene	-1.2992	-7.9434	6.6442	313.2985	285.2393	3.3221	32.0296	302.38	15.673	1128
51 Naphtho[2.3-k]fluoranthene	-0.9127	-7.9780	7.0653	317.5809	285.6889	3.5327	30.7358	302.38	15.673	1200

(continued on next page)

Table 2 (continued)

116

CAS name	$E_{\rm LUMO}$	E _{HOMO}	GAP	Area	Volume	η	α	MW	R	Wiener
52 Fluoranthene	-0.9294	- 8.6301	7.7007	222.8304	195.1020	3.8503	21.5443	202.26	10.535	364
53 Dibenzo[k.mno]fluoranthene	-0.9755	-8.4000	7.4245	280.3476	257.0611	3.7122	27.3474	276.34	14.259	848
54 1.2-Dihydroacenaphthylene	-0.2132	- 8.4944	8.2812	183.2279	155.6393	4.1406	16.8321	154.22	7.966	166
55 9H-fluorene	-0.2088	-7.5446	7.3358	196.5286	166.8248	3.8767	19.1064	166.23	8.673	219
56 Benzo[b]fluorene	-0.4880	-8.4783	7.9903	244.4588	212.2972	3.9952	22.1648	216.99	11.242	471
57 Benzo[c]fluorine	-0.6415	-8.2835	7.6420	239.5300	211.6880	3.8210	23.0518	216.99	11.242	453
58 Benzo[ghi]fluoranthene	-0.9911	-8.6995	7.7084	234.9511	211.8821	3.8542	22.8845	226.28	11.69	478
59 Benzo[a]aceanthrylene	-1.3219	-8.0850	6.7631	266.0202	239.9710	3.3815	27.9729	252.32	13.104	666
60 Indeno[1.2.3.cd]pyrene	-1.2835	-8.1363	6.8528	282.0055	256.9774	3.4264	29.0669	276.34	14.259	845
61 Indeno[1.2.3-cd]fluoranthene	-1.3350	-8.5435	7.2085	286.4592	258.3600	3.6043	28.0860	313.38	16.121	871
62 Cyclopenta[cd]pyrene	-1.3123	-8.2727	6.9604	234.42	211.87	3.4802	25.0704	226.28	11.69	483
63 Benzo[j]fluoranthene	-1.1767	- 8.3165	7.1398	265.90	239.95	3.57	26.7991	252.32	13.104	678
64 Benzo[k]fluoranthene	-0.9892	-8.2994	7.3102	270.1861	240.39	3.69	26.0929	252.32	13.104	698
65 Benzo[a]fluorene	-0.5607	- 8.3656	7.8049	243.65	212.28	3.90	22.6540	216.28	11.242	461
66 Dibenz[e.k]acephenanthrylene	-1.0702	-8.2215	7.1513	315.12	285.45	3.58	30.4554	320.38	14.966	1156
67 Benzo[b]fluoranthene	-0.9654	- 8.6166	7.6512	267.71	240.02	3.80	25.4749	252.32	13.104	676

 η , Hardness; α , polarizability; *R*, Randic connectivity index.

coefficient, $R^2 = 0.995$ and crossvalidated correlation coefficient, $Q^2 = 0.993$ for a PLS model with two latent variables (LV) describing 99.62% of total variance (Table 3). The performance of the PCR model built with the same set of descriptors was tested and one extra principal component (PC) was necessary to reach the same results obtained with the previous model. This means that all three PCs are important to build a PCR model (no data compression) and it is a consequence of the small number of variables used to model the data. A PCR model built with all

the principal components (number of PCs = number of original variables) corresponds to a multiple linear regression [32]. The results obtained for these three factors in PCR model are very similar to those from PLS model: $R^2 = 0.995$ and $Q^2 = 0.994$ (Table 3).

In a previous work, Ferreira [7] obtained $R^2 = 0.999$ for a PLS model with four latent variables in a data set consisting only of 23 PAHs, all of them with just six-membered ring molecules. In the present work, a larger set of compounds including 13 molecules with five-membered ring is being

Fig. 2. Biplots showing the correlation between dependent variables, boiling point, log Kow and RI, and independent variables.

F.A. de Lima Ribeiro, M.M.C. Ferreira / Journal of Molecular Structure (Theochem) 663 (2003) 109–126

Table 3
QSPR results obtained by PCR and PLS for bp (°C), using the variables: volume, molecular weight (MW) and Randic connectivity index (A

	SEV	Press val	Variance (%)	Q^2	R^2	Variables selected	$oldsymbol{eta}^{\mathrm{a}}$
PCR							
PC1	10.1142	3682.6804	99.5335	0.9894	0.9904	Volume	-0.4204
PC2	10.3821	3880.3789	99.9094	0.9888	0.9904	MW	1.3607
PC3	7.7567	2165.9758	100.0000	0.9938	0.9950	Randic	0.0555
PLS							
LV1	10.11091	3680.29980	99.53308	0.9896	0.9904	Volume	-0.4353
LV2	8.47435	2585.32593	99.62433	0.9942	0.9950	MW	1.3519
LV3	7.75667	2165.97583	100.00000	1.0000	1.0000	Randic	0.0793

The models used to predicted bp are in boldcase.

^a Regression coefficients for three principal component (PCR model) and two latent variables (PLS model).

investigated. Some of them contain sp^3 carbon atoms, resulting in reduced electron delocalization in the entire molecule. A larger set would be necessary to represent this class and to construct a model with a better fit, but unfortunately bp for only 14 of such structures were available in the literature. In spite of this, the results obtained were considered very satisfactory for QSPR studies. As mentioned in the methodology, the regression coefficients (Table 3) are unscaled to obtain the usual regression equations (see Appendix A for scaling details). The regression equations obtained for PCR and PLS models are described in Eqs. (7) and (8), respectively

$$bp = -22.5705 - 1.0358Volume + 2.8884MW$$

+2.2112R (7)

bp = -21.0385 - 1.0726Volume + 2.8696MW

$$+3.1615R$$
 (8)

The validation errors obtained by leave-one-out crossvalidation method for PCR and PLS models are shown in Table 4, where the first column contains the experimental values. All the bps were predicted by crossvalidation with an error lower than 4% and the predicted bps are very similar for both models. It should be emphasized that these values are obtained when the predicted compound is not included in the model. The experimental vs. predicted values using PCR and PLS models are plotted, respectively, in Fig. 3(a) and (b).

The bp of any chemical can be explained thermodynamically as the temperature at which

the thermal energy of the particles is sufficient to break the cohesion forces which keep the substance in the aggregation state which characterizes the liquid phase, and allows an estimative of the atmospheric dispersion of chemicals.

The bp of PAHs can be related to the van der Waals forces for non-polar molecules, which are weaker than the dipole forces characteristic for polar molecules. The energy of these kind of intermolecular forces is closely related to structural size and molecular branching. Thus, parameters such as molecular weight, volume, surface area and Randic connectivity index are required to model bp. Although well correlated to bp, surface area (Fig. 2), was not used as a descriptor because it is highly correlated to the molecular volume, and so contains very much similar information. To illustrate the influence of the molecular size on bp, let us consider the linear polyacenes: naphthalene (bp = $218 \degree C$; MW = 128.18), anthracene (bp = $340 \degree C$; MW = 178.24) and naphthacene (bp = 440 °C; MW = 228.30), which differ among themselves by the number of fused rings (Fig. 1) arranged linearly. Naphthacene has two more rings than naphthalene, and its larger surface area leads to a greater number of intermolecular contacts, increasing the bp. These intermolecular van der Waals interactions are mainly of the type $C-H \cdot \cdot \cdot C-H$, which are influenced by the contact area available for these interactions, expressed by the molecular weight, volume and surface area.

However, these are not the only descriptors related to the contact area. The branching effect or, in the case of PAHs, the effect of the arrangement of condensed

Table 4 Validation errors (%) for PCR (three factors) and PLS models (two factors) for boiling point (°C)

118

	Experimental bp (°C)	Predicted bp		Validation error (%)
	J	PCR model with 3 PC	PLS model with 2 LV	PCR model with 3 PC	PLS model with 2 LV
1 Naphthalene	218.00	225.12	225.08	- 3.27	- 3.25
2 Anthracene	340.00	326.45	326.49	3.98	3.97
3 Phenanthrene	338.00	327.26	327.34	3.18	3.15
4 Naphthacene	440.00	428.48	426.53	2.62	3.06
5 Benz[<i>a</i>]anthracene	435.00	429.70	428.68	1.22	1.45
6 Chrysene	431.00	430.82	430.51	0.04	0.11
7 Triphenylene	429.00	431.79	431.67	-0.65	-0.62
8 Pyrene	393.00	381.69	381.53	2.88	2.92
10 Perylene	497.00	486.55	485.85	2.10	2.24
11 Benzo[<i>a</i>]pyrene	496.00	486.16	485.73	1.98	2.07
12 Benzo[<i>e</i>]pyrene	493.00	487.02	486.79	1.21	1.26
13 Picene	519.00	537.33	538.86	- 3.53	- 3.83
16 Dibenz[<i>a</i> . <i>h</i>]anthracene	535.00	534.84	535.35	0.03	-0.06
17 Dibenz[<i>a.j</i>]anthracene	531.00	535.56	536.33	-0.86	-1.00
18 Benzo[b]triphenylene	535.00	535.81	536.05	-0.15	-0.20
23 Dibenzo[<i>b.def</i>]chrysene	596.00	588.31	586.75	1.29	1.55
24 Dibenzo[<i>def.mno</i>]chrysene	547.00	540.16	539.06	1.25	1.45
32 Benzo[ghi]perylene	542.00	541.16	540.349	0.15	0.30
41 Coronene	590.00	596.80	595.97	-1.15	-1.01
42 Naphtho[1.2.3.4- <i>def</i>]chrysene	592.00	589.68	588.61	0.39	0.57
43 Dibenzo[<i>def.p</i>]chrysene	595.00	589.22	587.82	0.97	1.21
44 Benzo[<i>rst</i>]pentaphene	594.00	588.64	587.32	0.90	1.13
49 Acenaphthylene	270.00	278.34	277.69	-3.09	-2.85
52 Fluoranthene	383.00	380.79	380.83	0.58	0.57
54 Acenaphthene	279.00	275.90	273.62	1.11	1.93
55 9H-fluorene	294.00	302.69	302.76	-2.96	-2.98
56 Benzo[b]fluorene	398.00	406.53	406.95	-2.14	-2.25
57 Benzo[c]fluorene	406.00	406.40	406.76	-0.10	-0.19
58 Benzo[ghi]fluoranthene	422.00	437.12	437.01	- 3.58	- 3.56
60 Indeno[1.2.3.cd]pyrene	534.00	539.82	539.93	-1.09	- 1.11
61 Indeno[1.2.3- <i>cd</i>] fluoranthene	531.00	538.37	538.55	-1.39	-1.42
63 Benzo[<i>i</i>]fluoranthene	480.00	437.10	434.25	-1.52	-2.05
64 Benzo[k]fluoranthene	481.00	487.32	489.84	-1.19	- 1.68
65 Benzo[<i>a</i>]fluorene	403.00	486.73	489.08	-1.19	-2.04
67 Benzo[b]fluoranthene	481.00	407.79	411.21	-1.28	- 1.77

The validation errors were calculated from residuals (experimental-estimated value) obtained by leave-one-out crossvalidation.

rings to the bp can be understood from another four isomers with molecular weight MW = 228.30: naphthacene (bp = 440 °C), benz[*a*]anthracene (bp = 435 °C), triphenylene (bp = 429 °C) and chrysene (bp = 431 °C), in Fig. 1. With increasing branching, the number of intermolecular contacts (C-H···C-H) tends to decrease. Therefore, the energy necessary to break these intermolecular interactions for naphthacene is greater than for triphenylene, resulting in a higher bp. The branching is, in the model, taken into account by Randic connectivity index [40,41]. The value of bp results from the influence of all the three descriptors together: molecular weight, molecular volume and Randic index.

After validation, the model constructed with the smallest validation error was used to predict the bp of the other 31 molecules. The experimental values used to build the model ranged from 218 $^{\circ}$ C (naphthalene)

Fig. 3. Plot of experimental vs. predicted values for boiling point modeled by PCR (a) and PLS (b).

to 596 °C (dibenzo[*b.def*]chrysene). Some of the predicted values for PLS model were found beyond this range, but as tested previously, the models proposed in the present work are also robust [7]. In general, the bp predicted values obtained by both PLS and PCR models are extremely close to each other.

According to White [42] and Ferreira [7], the calculated bp for benzo[*b*]chrysene are 541 and 538 °C, respectively, which are in excellent agreement with the values predicted by the present work: 534.7 and 534.9 °C for PLS and PCR models, respectively. Their predicted bp for pentacene are 529 and 548.3 °C, respectively, while those estimated by this work are 533.3 °C (PLS) and 533.8 °C (PCR). Todeschini et al. [30] predicted a value of 297 °C for fluorene, which is very close to the values obtained in this work: 303.9 °C (PLS) and 303.3 °C (PCR).

Comparing with Ferreira's results [7], some predicted bps disagree by about 20 °C as a consequence of the extended group of molecules used in this work to construct the models, which include 13 new PAHs with five-membered rings.

3.2. Octanol-water partition coefficient (log K_{ow})

The experimental values of $\log K_{ow}$ of 21 compounds (Table 1) were used to construct the regression models. As for the bp, the same variables volume, molecular weight and Randic connectivity

index [40,41] were used to build the PCR and PLS models. The regression analysis of log K_{ow} of non-substituted PAHs with these molecular descriptors resulted in a correlation coefficient $R^2 = 0.976$ and a crossvalidated correlation coefficient $Q^2 = 0.968$ with two latent variables describing 99.89% of total variance for the PLS model, and $R^2 = 0.975$, $Q^2 = 0.968$ also with two principal component describing 99.91% of total variance (Table 5) for PCR model. Ferreira [7] obtained $R^2 = 0.992$ with three latent variables for a data set consisting of PAHs with six-membered ring molecules.

The unscaled regression equation obtained for PCR model is given in Eq. (9), and the one for PLS in Eq. (10)

$$\log K_{\rm ow} = 0.3424 + 0.0177 \text{Volume} + 0.0120 \text{MW} - 0.1178 R$$

(9)

$$\log K_{\rm ow} = 0.2231 + 0.0222 \text{Volume} + 0.0084 \text{MW} - 0.1230 R \tag{10}$$

As shown in Table 6, except for acenaphthene, benzo[b]fluorene and benzo[b]fluoranthene both models presented validation errors lower and around 5%. In general, the PLS results are slightly better. The experimental values vs. predicted values using the PCR and PLS models are plotted, respectively, in Fig. 4(a) and (b). All the PAHs considered in this work are extremely hydrophobic, but small variations in their molecular structure can cause considerable

Table 5

120

QSPR results obtained by PLS and PCR for octanol-water partition coefficient (log K_{ow}), using the variables: volume, molecular weight (MW) and Randic connectivity index (R)

	SEV (%)	Press val (%)	Variance (%)	Q^2 (%)	R^2	Variable selected	$oldsymbol{eta}^{\mathrm{a}}$
PCR							
PC1	0.1955	0.8410	99.5467	0.9630	0.9687	Volume	0.7165
PC2	0.1829	0.7355	99.9094	0.9676	0.9753	MW	0.5699
PC3	0.1817	0.7262	100.0000	0.9680	0.9775	Randic	-0.3012
PLS							
LV1	0.19540	0.84003	99.54408	0.9630	0.9688	Volume	0.8983
LV2	0.18092	0.72011	99.88776	0.9683	0.9763	MW	0.4015
LV3	0.18168	0.72619	99.99999	0.9680	0.9775	Randic	-0.3145
LV3	0.18168	0.72619	99.99999	0.9680	0.9775	Randic	

The models used to predict $\log K_{ow}$ are in boldcase.

^a Regression coefficients for two principal component (PCR model) and two latent variables (PLS model).

changes in their affinity for organic or aqueous solvents. The values of $\log K_{ow}$ are also highly related with the intermolecular forces responsible for the specific affinity of the substance with the solvent in each phase. These molecular properties are controlled

by the structural size and molecular branching of the compounds.

Considering again the example illustrated previously (see structures in Fig. 1): naphthalene (log $K_{ow} = 3.37$; MW = 128.18), anthracene

Table 6

Validation errors (%) for PCR and PLS models using two factors for octanol-water partition coefficient (log K_{ow})

	Experimental log K_{ow}	Predicted log K_{ow}		Validation error (%)		
		PCR model with 2 PC	PLS model with 2 LV	PCR model with 2 PC	PLS model with 2 LV	
1 Naphthalene	3.37	3.54	3.53	- 5.04	-4.73	
2 Anthracene	4.54	4.56	4.56	-0.39	-0.43	
3 Phenanthrene	4.57	4.55	4.54	0.54	0.55	
4 Naphthacene	5.76	5.71	5.74	0.86	0.40	
5 Benz[<i>a</i>]anthracene	5.91	5.67	5.69	4.03	3.67	
6 Chrysene	5.86	5.67	5.69	3.19	2.88	
7 Triphenylene	5.49	5.73	5.74	-4.30	-4.54	
8 Pyrene	5.18	5.01	4.99	3.36	3.74	
10 Perylene	6.25	6.02	6.02	3.62	3.75	
11 Benzo[a]pyrene	6.04	6.06	6.06	-0.36	-0.27	
16 Dibenz[<i>a</i> . <i>h</i>]anthracene	6.75	6.75	6.78	-0.01	-0.51	
32 Benzo[ghi]perylene	6.5	6.53	6.50	-0.43	-0.06	
41 Coronene	6.75	7.05	7.04	-4.50	-4.34	
49 Acenaphthylene	4	3.99	3.97	0.15	0.69	
52 Fluoranthene	5.22	5.03	5.02	3.59	3.78	
54 Acenaphthene	3.92	4.17	4.17	- 6.38	- 6.31	
55 9H-fluorene	4.18	4.36	4.36	-4.36	-4.42	
56 Benzo[b]fluorene	5.75	5.38	5.39	6.46	6.31	
64 Benzo[k]fluoranthene	6	6.09	6.10	-1.56	- 1.59	
65 Benzo[a]fluorene	5.4	5.37	5.38	0.56	0.31	
67 Benzo[b]fluoranthene	5.8	6.12	6.11	- 5.47	- 5.43	

The validation errors were calculated from residuals (experimental-estimated value) obtained by leave-one-out crossvalidation.

Fig. 4. Plot of experimental vs. predicted values for $\log K_{ow}$ modeled by PCR (a) and PLS (b).

(log $K_{ow} = 4.54$; MW = 178.24) and naphthacene (log $K_{ow} = 5.76$; MW = 228.30), the increase in hydrophobicity (described by log K_{ow} values) as a function of the number of rings and molecular size is clearly seen.

The importance of the arrangement of condensed rings can be discussed considering the four isomer structures (MW = 228.30): naphthacene (log K_{ow} = 5.76), benz[a]anthracene (log $K_{ow} = 5.91$), triphenylene (log $K_{ow} = 5.49$) and chrysene (log $K_{ow} =$ 5.86). The spatial distribution of rings in these molecules results in small branching, which is described in the constructed models by molecular volume. Benzo[b]fluorene is one of the few compounds with five-membered ring (see structures in Fig. 1) and lower electron delocalization. All these five-membered ring molecules exhibit a planar structure, having just the hydrogen atoms bonded to the sp³ carbon atom, out of the molecular plane. For the bp, all of them (acenaphthene, fluorene, benzo[b]fluorene, benzo[c]fluorene and benzo[a]fluorene) were included to construct the model, resulting in a more representative calibration set for these PAHs. For K_{ow} , there is no experimental data for benzo[c]fluorene, resulting in larger validation errors for acenaphthene, and particularly for benzo[b] fluorene, because this class has only a few representative members when constructing the models and two of them are isomers.

Benzo[b]fluoranthene, another structure with a high validation error, belongs to a small group of

PAHs with six- and five-membered rings, in which there are bonds that are always single (see the structures in Fig. 1). To construct the bp model, six of these structures were used and for the log K_{ow} model just three. This could be the source of the increased validation error for benzo[b]fluoranthene, although the error could be originated from uncertainties in experimental determinations or other unknown factors. It should be emphasized that this discussion is based on validation errors, originated from prediction when the compound is not in the model, and so, different from the predicted value using Eqs. (10) and (11), where these errors are smaller.

After validation, the two-factor models were used to predict the log K_{ow} of the other 46 molecules. Table 1 shows the experimental and predicted log K_{ow} values. The experimental values used to build the model were in the range of 3.37 (naphthalene) to 6.75 (dibenz[*a.h*]anthracene and coronene), and some of the predicted values were found beyond this range but very close to the extreme values.

Todeschini et al. [30] and Ferreira [7] predicted the log K_{ow} for dibenz[*a,j*]anthracene as 6.62 and 6.87, respectively, which are in excellent agreement with the predicted values obtained in the present work: 6.67 for PLS and 6.75 for PCR models. Todeschini et al. [30] calculated 6.07 to the log K_{ow} value for benzo[*ghi*]fluoranthene, which are in good agreement with values obtained in this work: 5.49 (by PLS) and 5.51 (by PCR).

3.3. Retention time index for reversed-phase *LC* analysis

The regression models for RI were constructed using experimental data from a group of 44 molecules of non-substituted PAHs (Table 1). The molecular descriptors E_{LUMO} , hardness (η), polarizability (α), molecular weight (MW) and Wiener index (Wiener) [5] listed in Table 2 were selected to build the model.

The regression analysis of RI with these molecular descriptors resulted in a correlation coefficient $R^2 = 0.898$ and a crossvalidated correlation coefficient $Q^2 = 0.882$ for the PLS model with two latent variables describing 97.53% of total variance. The PCR model using also two principal components resulted in $R^2 = 0.898$ and $Q^2 = 0.882$, for 97.63% of total variance explained (Table 7). Ferreira [7] obtained $R^2 = 0.9702$ for a model with three latent variables in a data set consisting only of 33 PAHs, all of them with six-membered ring. The unscaled regression equations obtained for PCR and PLS models, using the regression coefficients in Table 7, are described in Eqs. (11) and (12), respectively RI = $2.3164 - 0.3308E_{LUMO} - 0.3588\eta$

$$+0.0470\alpha + 0.0049$$
MW $+0.0007$ Wiener (11)
RI $= 2.3561 - 0.3289 E_{LUMO} - 0.3627 \eta$

$$+0.0465\alpha$$
 + 0.0048MW + 0.0007Wiener (12)

Although the plots of experimental vs. predicted values (Fig. 5(a) and (b)) show a larger spread than expected, the validation errors are very satisfactory for QSPR studies, with residuals smaller than 10% (Table 8), where only benzo[*b*]fluorene gave a validation error above this limit (10.44%).

Again, the validation errors obtained by the PLS model were smaller than those obtained by the PCR model. The experimental values of RI used to construct the models are between two (naphthalene) and six (dibenz[a.h]anthracene and coronene).

RI is a parameter used in chromatographic analysis to separate hydrocarbon mixtures, and provide the elution order of each compound [15]. This order is a result of complex factors, and involves interactions between the mobile and stationary phase. These interactions are very much related to the molecular structure of both phases, and the variations in RI result from the structural variations of the compounds.

For instance, larger compounds tend to have higher retention times, as they possess larger surface areas that promote the formation of stronger interactions with the stationary phase in comparison to smaller compounds. These interactions hinder the diffusion of the solute through the stationary phase, increasing the retention time of the compound. Compare the RI of anthracene (RI = 3.2) and naphthacene, RI = 4.51).

The strength of these intermolecular interactions also depends on factors such as the number of rings

Table 7

QSPR results obtained by PLS and PCR for retention time index (RI), using the variables: LUMO's Energy (E_{LUMO}), hardness (η), polarizability (α), molecular weight (MW) and Wiener index

	SEV (%)	Press val (%)	Variance (%)	Q^2 (%)	R^2 (%)	variables selected	$oldsymbol{eta}^{\mathrm{a}}$
PCR							
PC1	0.2529	2.8142	81.9049	0.8729	0.8861	$E_{\rm LUMO}$	-0.1329
PC2	0.2435	2.6080	97.6292	0.8822	0.8980	η	-0.1232
PC3	0.2494	2.7358	99.6965	0.8764	0.8981	α	0.2416
PC4	0.2525	2.8046	99.9492	0.8733	0.9009	MW	0.2644
						Wiener	0.2654
PLS							
LV1	0.2493	2.7343	81.7339	0.8765	0.8903	E_{LUMO}	-0.1321
LV2	0.2442	2.6228	97.5313	0.8815	0.8981	η	-0.1246
LV3	0.2624	3.0300	97.9662	0.8632	0.9004	α	0.2387
LV4	0.2537	2.8315	99.9243	0.8721	0.9011	MW	0.2595
						Wiener	0.2729

The models used to predict the retention index are in boldcase.

^a Regression coefficients for two principal component (PCR model) and two latent variables (PLS model).

Fig. 5. Plot of experimental vs. predicted values for retention time index (RI) modeled by PCR (a) and PLS (b).

and the branching. For example, in a set of isomers with the same molecular weight (MW = 228.3), the larger the volume and surface area, the greater the RI. Compare naphtacene (RI = 4.51), benz[*a*]anthracene (RI = 4.00), chrysene (RI = 4.10) triphenylene (RI = 3.7) and benzo[c]phenanthrene (3.64). The RI decreases for more compact molecules. But there is another parameter to be considered: the planarity. Benzo[c]phenanthrene is the only compound among these four which shows a non-planar and helicoidal structure (Fig. 6) and this peculiarity influences their elution time. Another example on the effect of this non-planarity which occurs due to the steric repulsion between the hydrogen atoms from proximal rings in 3D space, and influences the elution time, is given by dibenz[a.i]anthracene (RI = 4.56), benzo[c]chrysene (RI = 4.45)and dibenzo[g.c]phenanthrene (RI = 4.07) [15]. This information about compactness, ring distribution, number of rings and planarity is provided in Eqs. (11) and (12) by the topological descriptor named Wiener index [5,25]. This topological index was proposed by Wiener in 1947 and describes the molecular ramifications through a distance matrix. The matrix elements are the distances between pairs of atoms (given by the smallest number of chemical bonds between them) in the molecule. The Wiener index is inversely proportional to the compactness of the molecule [5,25]. Besides the molecular weight and the Wiener index, three electronic variables contributed to the construction of the regression model: the energy of the frontier orbital LUMO, hardness and polarizability.

Hardness is defined by the gap energy between the frontier orbitals, described in Eq. (13) where η is the hardness, and E_{LUMO} and E_{HOMO} are, respectively, the LUMOs and HOMOs energies

$$\eta = \frac{1}{2} (E_{\text{LUMO}} - E_{\text{HOMO}}) \tag{13}$$

The absolute hardness is a measure of energy stabilization of a system. The greater the hardness, the greater the stability of a chemical. Polarizability (α), indicates the ease with which species can be deformed by an electric field. One of the most important polarizing influences on a chemical species is that arising from the presence of another species nearby. The changes in the wavefunction and energies are responsible for the adhesion of both species, resulting in intermolecular interactions. These intermolecular forces are directly related to the RI values.

In spite of the correlation among these variables, all of them give some complementary information, essential for the good fitting of the model. Some models were constructed excluding each electronic variable, one at a time, however, the obtained results were inferior to those obtained when the three of them were included simultaneously.

After validation, the model constructed was used to predict the RI of 23 other PAHs. Just one predicted value was found outside the range of the modeling set, but very close to the extreme (Table 1) and the values

Table 8 Validation errors (%) for PCR and PLS models using two factors for retention time index (RI)

	Experimental RI	Predicted RI		Validation Error (%)	
		PCR model with 2 PC	PLS model with 2 LV	PCR model with 2 PC	PLS model with 2 LV
2 Anthracene	3.2	3.38	3.39	- 5.75	- 5.79
3 Phenanthrene	3	2.91	2.91	3.08	3.04
4 Naphthacene	4.51	4.33	4.33	4.00	4.03
5 Benz[<i>a</i>]anthracene	4	3.91	3.91	2.18	2.19
6 Chrysene	4.1	3.75	3.75	8.43	8.43
7 Triphenylene	3.7	3.49	3.49	5.55	5.58
8 Pyrene	3.58	3.67	3.67	-2.64	-2.62
9 Benzo[c]phenanthrene	3.64	3.72	3.72	-2.21	-2.20
10 Perylene	4.33	4.51	4.51	-4.20	-4.17
11 Benzo[<i>a</i>]pyrene	4.53	4.47	4.47	1.26	1.28
12 Benzo[<i>e</i>]pyrene	4.28	4.19	4.19	2.14	2.17
14 Pentaphene	4.67	4.65	4.65	0.49	0.46
15 Benzo[b]chrysene	5	4.78	4.78	4.34	4.33
16 Dibenz[a, h]anthracene	4.73	4.59	4.59	2.91	2.88
17 Dibenz[<i>a</i> , <i>i</i>]anthracene	4.56	4.66	4.66	-2.16	-2.18
18 Benzo[<i>b</i>]triphenylene	4.4	4.59	4.59	-4.31	-4.31
19 Benzo[<i>c</i>]chrysene	4.45	4.46	4.46	-0.20	-0.22
21 Dibenzo[<i>c</i> g]phenanthrene	4 07	4 47	4 47	-9.79	-9.80
22 Benzo[<i>a</i>]naphthacene	4 99	5.00	5.00	-0.17	-0.19
23 Dibenzo[<i>h def</i>]chrysene	6	5 40	5 40	9.94	9.96
24 Dibenzo[<i>def mno</i>]chrysene	5.08	5.06	5.06	0.46	0.49
29 Dibenzo[<i>de gr</i>]naphthacene	4 92	4 89	4 89	0.68	0.66
32 Benzo[<i>ahi</i>]nerv]ene	4 76	4 68	4 68	1.65	1.68
35 Benzo[<i>b</i>]pervlene	5.04	5.24	5.24	-4.03	-4.05
42 Naphtho[1 2 3 4- <i>def</i>]chrysene	4 97	5.10	5.10	-2.67	-2.68
43 Dibenzo[<i>def n</i>]chrysene	4.89	5.15	5.15	-5.30	-5.30
44 Benzo[<i>rst</i>]pentaphene	5 73	5.25	5.15	8 4 5	8 4 5
45 Benzo[<i>a</i>]chrysene	1 27	4.52	4.52	- 5 88	- 5.88
46 2 3.5 6-Dibenzonbenanthrene	4.27	4.52	4.76	- 10.00	-10.03
47 Naphtho[2.1.8- <i>ara</i>]naphthacene	5.87	5 30	5 30	8 20	8 21
$\frac{18}{100}$ Dibenz[<i>a a</i> laceantrylene	10	5.23	5.37	-6.83	-6.85
50 Dibenzo[$a k$]fluoranthene	4.9	5.25	5.35	- 0.20	- 0.22
52 Eluoranthene	4.9	3.51	3.51	- 1 25	- 1 30
55 0H fluorene	27	2.80	2.00	-7.00	-7.41
56 Panzo[h]fluorano	2.7	2.09	2.90	10.44	10.44
57 Benzo[<i>c</i>]fluorene	3.40	3.62	3.62	- 3.81	- 3.80
50 Panzo[<i>a</i>]fluoranthana	J.49 4 22	J.02 4 50	3.02 4.50	- 9.66	- 8.66
60 Indeno[1 2 3 cd]pyrene	4.22	4.39	4.39	- 8.00	- 8.00
61 Indeno[1.2.2. ad] flyerenthene	4.04	4.62	4.02	2.00	0.52
63 Banzo[<i>i</i>]fluoranthana	4.95	4.74	4.75	- 3.90 - 3.76	4.00
64 Ponzo[k]fluoranthana	4.24	4.40	4.40	- 5.70	- 5.70
65 Denzo[a lfluorance	4.42	4.20	4.20	5.55	5.30
66 Dihang[a hlagarhangthanlar	5.12 5.07	5.54 5.19	5.54 5.19	4.95	4.94
(7 Denes [h] Herenes (5.27	J.18	5.18	1.0/	1.0/
6/ Benzo[b]fluoranthene	4.29	4.17	4.17	2.13	2.80

The validation errors were calculated from residuals (experimental-estimated value) obtained by leave-one-out crossvalidation.

Fig. 6. Spacial rotation of benzo[c]phenanthrene.

obtained by PCR and PLS are almost identical. Ferreira [7] predicted RI for pentacene, dibenzo[a,j]-naphthacene, dibenzo[a,l]naphthacene and coronene as 5.72, 6.30, 6.27 and 5.21, respectively, which are in excellent agreement with the predicted values of 5.40, 5.77, 5.75 and 4.91 obtained in the present work using PLS model. The values obtained for these compounds by PCR model are, respectively, 5.40, 5.76, 5.75 and 4.92.

4. Conclusions

QSPR studies are an important tool for research and knowledge of chemical compounds and it has been frequently used in medicinal chemistry and molecular design to investigate new drugs. It is especially useful when the experimental determination of properties is very complex, the handling of materials may involve some risk, or determinations may not be easy in cases where compounds can quickly degrade. In general, the experimental determinations are very expensive and the QSPR studies allow a reduction of this cost. Experimental difficulties in the determination of the bp and log K_{ow} of PAHs arise from the fact that besides their high toxicity, they are highly hydrophobic.

From a set of 168 molecular descriptors, it was possible to select a few of them to construct regression models with good predictability for three physicochemical properties: bp, $\log K_{ow}$ and RI. The PLS method has been shown to be a useful and powerful tool to construct these QSPR models and allow the prediction of the properties not available yet in the literature for five- and six-membered rings PAHs. PCR, another multivariate repression method not so popular in QSPR studies was also tested for comparison. It could be observed that the statistical parameters obtained for both models PCR/PLS are very close to each other. The same was found for the predicted values of bp, K_{ow} and RI.

Acknowledgements

This work was supported by agencies FAPESP, CAPES and FAEP. We thank Dr Lucicleide R. Cirino for assistance with the theoretical calculations and valuable suggestions, and Dr Stephen Gurden for the text revision. Also the National Center for High Performance Computing in São Paulo (CENAPAD), for computational support.

Appendix A. Calculations of the unscaled regression vector (from autoscaled data) using MATLAB code

For each calibration data set:

- (1) denote the data matrix by **X**;
- (2) denote the dependent variable vector by y;
- (3) denote the autoscaled regression vector (from the

model) by beta;

126

- (4) calculate the mean of **y** by ymean = mean(y);
- (5) calculate the mean of **X** by xmean = mean(X);
- (6) calculate the standard deviation of y by ystd = std(y);
- (7) calculate the standard deviation of X by *xstd* = *std*(X);
- (8) find the unscaled regression vector calculating the indices β_0 and β_1 , where *N* is the number of independent variables used in the model:

$$\beta_0 = (ymean - ((xmean. * (ones(1, N)$$

* ystd./xstd)) * beta))

$$\beta_1 = (diag(ones(1, N) * ystd./xstd)) * beta$$

- (9) the regression equation is: $y = \beta_0 + (\beta_1 * X)$;
- (10) check the validation of the equation calculating the calibration errors (use the calibration data set)

$$y_{pred} = \beta_0 + (\beta_1 * X)$$

 $Errors = y - y_{pred}$

For the prediction data set

- (1) denote the data matrix by **X**;
- (2) denote the dependent variable vector by y;
- (3) apply this new equation to find the predicted values of **y** for the prediction data set.

References

- D. Mackay, W.Y. Shiu, K.C. Ma, Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, vol. 3, Lewis, London, 1998.
- [2] H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, VCH, Weinheim, 1993.
- [3] M. Karelson, A. Perkson, Comput. Chem. 23 (1999) 49.
- [4] S. Arupjyoti, S. Iragavarapu, Comput. Chem. 22 (1998) 515.
- [5] H. Wiener, J. Am. Chem. Soc. 69 (1947) 17.
- [6] H.B. Krop, J.M. van Velzen, J.J.R. Parsons, H.A.J. Goves, Chemosphere 34 (1997) 107.
- [7] M.M.C. Ferreira, Chemosphere 44 (2001) 125.
- [8] L. Cirino, M.M.C. Ferreira, Quím. Nova 26 (2003) 312.
- [9] L.P. Burkhard, A.W. Andren, D.E. Armstrong, Environ. Sci. Technol. 19 (1985) 500.
- [10] E.U. Ramos, W.H.J. Vaes, H.J.M. Verhaar, J.L. Hermes, J. Chem. Inf. Comput. Sci. 38 (1998) 845.

- [11] Y.H. Zhao, G.D. Ji, M.T.D. Cronin, J.C. Dearden, Sci. Total Environ. 216 (1998) 205.
- [12] H.J.M. Verhaar, E.U. Ramos, J.L. Hermens, J. Chemom. 10 (1996) 149.
- [13] M.T.D. Cronin, T.W. Schultz, Sci. Total Environ. (1997) 75.
- [14] A.D.P. Netto, J.C. Moreira, A.E.X.O. Dias, G. Arbilla, L.F.V. Ferreira, A.S. Oliveira, J. Barek, Quím. Nova 23 (2000) 765.
- [15] L.C. Sander, S.A. Wise, Adv. Chromatogr. 25 (1986) 139.
- [16] A.F. Lehner, J. Horn, J.W. Flesher, J. Mol. Struct. 366 (1996) 203.
- [17] S.G. Huling, J.W. Weaver, Dense nonaqueous phase liquids. Ground water issue. EPA/540/4-91-002, US EPA. R.S. Kerr Environmental Research Laboratory, Ada, OK, p. 21.
- [18] C.J. Newell, S.D. Acree, R.R. Ross, S.G. Huling, Light nonaqueous phase liquids. Ground water issue. EPA/540/S-95/ 500, US EPA. R.S. Kerr Environmental Research Laboratory, Ada, OK, p. 28.
- [19] B. Elvers, S. Harokins Ullman's Encyclopedia of Industrial Chemistry, vol. B7, fifth ed., VCH, New York, 1996.
- [20] W. Karcher, R.J. Fordham, J.J. Dubois, P.G.J.M. Glaude, J.A.M. Lighart, Spectral Atlas of Polycyclic Aromatic Compounds, vol. 2, Kluwer Academic Publishers, Dordrecht, 1988.
- [21] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
- [22] PC SPARTAN[®] 1.0.5., Wavefunction, Inc., Irvine, CA, 2001.
- [23] M. Huang, D. Doerge, N. Bodor, E. Pop, M.E. Brewster, Int. J. Quantum Chem.: Quantum Biol. Symp. 22 (1995) 171.
- [24] N.S. Bodor, M. Huang, Int. J. Quantum Chem.: Quantum Biol. Symp. 61 (1997) 127.
- [25] H. Van der Waterbeemd, Chemometric Methods in Molecular Design, vol. 2, VCH, Weinheim, 1995.
- [26] P. Labute, J. Mol. Graphics Modelling 18 (2000) 464.
- [27] W.J. Hehre, L.D. Burke, A.J. Shusterman, W.J. Pietro, Experiments in Computational Organic Chemistry, Wavefunction, Irvine, CA, 1993.
- [28] F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 1999.
- [29] R. Todeschini, M. Lasagni, E. Marengo, J. Chemom. 8 (1994) 263.
- [30] R. Todeschini, P. Gramatica, R. Provenzani, E. Marengo, Chemom. Intell. Lab. Syst. 27 (1995) 221.
- [31] R. Todeschini, P. Gramatica, Quant. Struct.-Act. Relat. 16 (1997) 113.
- [32] P. Geladi, B.R. Kowalski, Anal. Chim. Acta 185 (1986) 1.
- [33] P. Geladi, J. Chemom. 2 (1988) 231.
- [34] M.M.C. Ferreira, J. Braz. Chem. Soc. 13 (2002) 742.
- [35] R. Custódio, J.C. Andrade, F. Augusto, Quím. Nova 20 (1997) 219.
- [36] M. Pimentel, B.B. Neto, Quím. Nova 19 (1996) 268.
- [37] Pirouette, Multivariate Data analysis for IBM PC Systems, 3, 01, Infometrix, Inc., Woodinville, WA, 2001.
- [38] PLS_Toolbox 2.0. Eigenvector Research: Manson, WA.
- [39] MATLAB[®]. for Windows, version 5.0, MathWorks, Inc., 1995.
- [40] M. Randic, Chem. Phys. Lett. 211 (1993) 478.
- [41] M. Randic, J. Am. Chem. Soc. 97 (1975) 6609.
- [42] C.M. White, J. Chem. Engng Data 31 (1986) 198.