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The use of chemical imaging is a developing area which has potential benefits for chemical systems

where spatial distribution is important. Examples include processes in which homogeneity is

critical, such as polymerizations, pharmaceutical powder blending and surface catalysis, and

dynamic processes such as the study of diffusion rates or the transport of environmental pollutants.

Whilst single images can be used to determine chemical distribution patterns at a given point in

time, dynamic processes can be studied using a sequence of images measured at regular time

intervals, i.e. a movie. Multivariate modeling of image data can help to provide insight into the

important chemical factors present. However, many issues of how best to apply these models remain

unclear, especially when the data arrays involved have four or five different dimensions (height,

width, wavelength, time, experiment number, etc.). In this paper we describe the analysis of video

images recorded during an experiment to investigate the uptake of CO2 across a free air–water

interface. The use of PCA and PARAFAC for the analysis of both single images and movies is

described and some differences and similarities are highlighted. Some other image transformation

techniques, such as chemical mapping and histograms, are found to be useful both for pretreatment

of the raw data and for dimensionality reduction of the data arrays prior to further modeling.
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1. INTRODUCTION

Chemical imaging covers a wide range of measurement

techniques all involved with the collection of spatially re-

solved measurements—images—which can be related to

the properties of the chemical system being measured. The

development of instruments capable of high resolution in

space, time and wavelength is continuing [1–4] and chemical

imaging looks set to become a widespread tool for both

laboratory and process chemistry applications. Temporal

imaging refers to the situation where images are measured

on the same system at regular intervals in time. This can be

used to provide snapshots of the system in real time, useful

for monitoring and/or control of heterogeneous processes,

[5] or for recording movies of dynamic processes in order to

study reaction kinetics or transport rates.

The simplest chemical images are univariate, gray-scale

images, such as 2D images from an electron microscope,

where each image is a matrix with dimensions height�width.

. Multivariate images are becoming more common, however,

with each image being a three-way array with dimensions

height�width�wavelength. A color image is a type of multi-

variate image in which light is measured at three wave-

lengths corresponding to red, green and blue light, i.e.

height�width� 3. Other types of multivariate images can be

produced by spectrophotometric cameras [2] or scanning

electrochemical microscopes [4]. A temporal sequence of

multivariate images forms a movie, a four-way array with

dimensions height�width�wavelength� time. As the dimen-

sionality of these data arrays increases, so the amount of data

generated becomes huge. For example, a 600� 800� 3 color

image measured every second generates 86 MB per minute or

5.2 GB per hour. In the case of spectroscopic imaging, this can

be increased 100-fold. Clearly, there is a need for multivariate

analysis methods capable of extracting the useful information

from these huge data arrays, and some applications of

chemometrics to image data have already appeared in the

last 15 years. Several of these have focused on the use of PCA
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and PLS to analyze single multivariate images taken from

examples outside of chemistry [6–9], or on the texture analy-

sis of images of powders [10] and food samples [11]. More

recently, chemical applications involving the simultaneous

analysis of multiple images from secondary ion mass spectro-

metry (SIMS) [12], X-ray photoelectron spectroscopy (XPS)

[13] and fluorescence microscopy [14] have been described.

The data used in this paper come from an investigation

into a gas–liquid transfer process in which CO2 is dissolved

by water under controlled conditions [15]. The presence of a

pH indicator causes a color change as CO2 is transported

through the system, and this process is recorded using a

color video camera. Whilst the aim of the experiment is to

determine the influence of temperature and salinity on CO2

uptake, the data are used here to investigate aspects of

multivariate image analysis in general.

Chemical imaging commonly results in three-way, four-

way or even higher-order data arrays. When modeling these

data, a number of possibilities exist. For example, it is

possible to model a movie in its entirety or frame by frame.

Different ways of arranging the data array prior to modeling

make a fundamental difference to the model obtained [11,16],

as can different ways of centering and scaling the data [7,17].

Whilst the benefit of using multivariate analysis to extract

important information is apparent, many aspects of how best

to apply the models are still unclear. In this paper we focus on

the use of two multivariate models already well known in

chemistry—PCA and PARAFAC—for the analysis of both

single images and movies. Some characteristics of these

models, with respect to their application to chemical images,

are contrasted and their relative merits are discussed.

In addition to multivariate models such as PCA and

PARAFAC, there also exists a huge range of standard image

processing and analysis techniques which have been used in

the analysis of images within other fields for many years.

Prior to statistical analysis of the data, it is necessary to

arrange the data in regular, congruent arrays. Some standard

image processing techniques are used here in order to

prepare the raw image data. The use of mapping and

histograms for the analysis of single images is also demon-

strated. Although these tools are valuable in their own right

for helping to understand the data, they can also be used for

reducing the dimensionality of the data, whilst retaining

chemical information, prior to further statistical modeling.

The rest of the paper is laid out as follows. In Section 2,

PCA and PARAFAC are introduced in the context of multi-

variate image analysis. In Section 3 the gas–liquid transfer

experiment is described, along with some computational

issues. In Section 4 the data preparation steps of digitization

and reconciliation are described. In Section 5, single multi-

variate images are analyzed using PCA and PARAFAC. In

Section 6, some other single-image analysis techniques—

mapping, histograms and mean profiles—are described. In

Section 7 the analysis of movies using PCA and PARAFAC is

described. Finally, conclusions are given in Section 8.

2. THEORY

The use of PCA for the analysis of single, multivariate

images is already well known [6,7,17]. The multivariate

image with dimensions height�width�wavelength is first

‘unfolded’ [18] to give a matrix with dimensions

height�width�wavelength. In the case of PCA a bilinear de-

composition is then carried out:

X ¼
XR
r¼1

trp
T
r þ E ¼ TPT þ E ð1Þ

where R is the number of principal components (PCs) used

to describe X and is typically small (i.e. less than five). The

scores T and loadings P summarize the important informa-

tion in the data, whilst discarding the redundant information

such as noise. In order to view the scores as a gray-scale

image, it is necessary to ‘refold’ each of the R score vectors,

i.e. tr (height �width� 1) is rearranged to Tr (height�width). In

a similar way it is possible to reconstruct a multivariate

image for the PCA residuals. Note that whilst this approach

can equally well be used to model a sequence of univariate

images measured in time (i.e. height�width� time), extend-

ing the model to multivariate movies is not possible, because

a meaningful rearrangement of the four-way array with

dimensions height�width�wavelength� time into a classical

two-way matrix does not exist [16].

One important consequence of the above approach is that

each pixel in the image is treated as an independent object.

This means that whilst between-image correlation [11] (i.e.

structure present in the wavelength or time dimension) is

modeled, within-image correlation (i.e. correlation between

the height and width dimensions) is not. This may be a

reasonable approach; real-world images are usually fairly

complex and do not necessarily lend themselves well to low-

dimensional, linear modeling. By treating each pixel as an

independent object, full spatial information is retained and it

is left to the user to find meaningful structure in the resultant

score images. One possible disadvantage of the use of PCA

in this context is that an orthogonal basis for the scores and

loadings is usually used in order to identify the model,

leading to score images which are ‘maximally different’

[19]. Real chemical features are rarely orthogonal and so

this purely mathematical constraint may make interpretation

of the model more difficult.

Multiway models recently introduced into chemistry, such

as parallel factor analysis (PARAFAC) [20–22], can be con-

sidered as generalizations of the classical, two-way ap-

proaches to data of order higher than two. For a three-way

array X (M�N�P), PARAFAC gives a trilinear decomposi-

tion which can be expressed as follows:

xmnp ¼
XR
r¼1

amrbnrcpr þ emnp ð2Þ

where X is decomposed into three sets of loadings, A

(M�R), B (N�R) and C (P�R). Arrays of higher order

(e.g. four-way, five-way, etc.) are modeled by simply adding

extra sets of loadings (i.e. D, E, etc.). Note that a differentia-

tion between score and loading matrices is not made for

multiway models; all the reduced-dimension matrices are

referred to as loadings. Furthermore, unlike in PCA, PAR-

AFAC components are calculated simultaneously, are not

orthogonal and therefore have no particular order in terms of

variation explained. As for PCA, it is possible to reconstruct

Multivariate image analysis 401

Copyright # 2003 John Wiley & Sons, Ltd. J. Chemometrics 2003; 17: 400–412



gray-scale images for each component, in this case by

plotting arb
T
r , where ar (height� 1) and br (width� 1) are

the loadings describing the spatial dimensions for the rth

component.

When applied to single, multivariate images, PARAFAC

offers an alternative approach to that of PCA, in which the

correlation between the height and width dimensions is

modeled, in addition to the between-image correlation. A

disadvantage of this approach is that only structurally

simple features are capable of being modeled, i.e. shapes

which can be described by simple linear decompositions.

Some advantages, however, are the vastly reduced number

of model parameters used and the well-known uniqueness

property of PARAFAC. The latter has already been shown to

yield much more interpretable models in some cases [21,23],

as it is not necessary to use orthogonality or maximum

variance constraints in order to identify the model. Another

advantage of PARAFAC is its increased flexibility in terms of

handling multiway arrays, making it suitable for modeling

multivariate movies and other higher-order arrays consist-

ing of multiple images.

3. EXPERIMENTAL

The exchange of CO2 between the atmosphere and the ocean

is of great environmental importance in terms of the global

carbon-cycling system [24,25], and new techniques are being

sought to improve understanding of this complex process

[26]. Despite a large number of experimental investigations

both in the field and in the laboratory [27–29], detailed

knowledge of the gas–liquid transfer process across a free

air–water interface is not currently available, one reason for

this being the number and variety of physical and chemical

factors which influence the process [30–32]. Air–sea ex-

change has commonly been modeled as a function of sea

surface temperature and wind speed (related to turbulence),

but other factors such as salinity, biomatter content, bubbles,

surfactants and boundary layer stability are also known to

contribute to the gas flux.

The data example used in this paper comes from an

experiment in which the uptake of CO2 by water under

controlled temperature and salinity conditions and in the

absence of turbulence is investigated [15]. A glass diffusion

tank of size 25� 25� 2.5 cm3, represented in Figure 1, holds a

saline solution into which a mixture of the pH indicator

methyl red and the color enhancer methylene blue has been

added. Sitting on top of the diffusion tank is a labyrinth

diffuser [15], a purpose-developed device used to introduce

CO2 at a constant partial pressure across the surface of the

solution. Surrounding the diffusion tank is a water bath used

to control the temperature of the solution. A Sony CCD-

TR700 VHS video recorder is situated approximately 4 m in

front of the diffusion tank. When the gas valve is opened,

CO2 enters the airspace at the top of the diffusion tank and

begins to dissolve through the water, changing the color of

the solution from green (pH 6.2) to violet (pH 4.2) owing to

the formation of carbonic acid, thus allowing the CO2 uptake

to be tracked visually. CO2 uptake is fast at the boundary

layer of the water, and after 1 min an approximately 3 mm

layer of dissolved CO2 is seen at the surface. In the absence of

turbulence, diffusion through the rest of the tank is much

slower and generally occurs heterogeneously and in chaotic

patterns depending, only in part, upon the temperature and

salinity of the water. Recording continues until the tank is

completely violet, this being a subjective judgment. The

experiment is carried out in a dark laboratory, with illumi-

nation being provided by a lamp positioned behind the

water bath and various precautions being taken to avoid

undesired light entering the video camera [15].

Although a number of experimental runs measured at

different temperatures and salinities were available, in this

paper we will concentrate on the analysis of one experi-

mental run for illustrative purposes. Experimental run 1 was

measured at a temperature of 25�C and using distilled water

in the diffusion tank. The duration of the experiment was

51 min. Analysis of multiple runs may be described in a

future paper.

3.1. Computations
All computations were performed using MATLAB Version

6.1 (The Mathworks, Natick, MA, USA) on a 1500 MHz PC

with 512 KB of RAM. Some of the image processing functions

were performed using the MATLAB Image Processing Tool-

box Version 3.1. PARAFAC models were built using The N-

way Toolbox for MATLAB Version 2.0 [33,34].

One of the major problems with modern chemical imaging

applications is the large memory requirement caused by the

size of the data arrays. Whilst a typical movie described here

used only 5 MB of hard disk space, this equaled around

86 MB of computer RAM when stored as unsigned integers

(i.e. integers from 1 to 255). However, owing to problems

such as rounding errors and overflow, it is not practical to

work with integers for computational purposes. After the

reconciliation step described below (in which some regions

of the images are discarded), the data were converted to

double-precision numbers for all subsequent analyses. This

required manipulation of multivariate image movies of

Figure 1. Diffusion tankused toinvestigategas^liquid transfer.
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around 350 MB and univariate image movies of around

115 MB. In some cases the MATLAB code must be carefully

written in order to optimize for memory rather than speed.

Examples of this would be replacing rather than creating

new arrays during preprocessing steps and performing even

simple mathematical operations frame by frame rather than

simultaneously on the entire movie array. Computation

times were not found to be excessive, however: a PCA on a

movie array took around 15 s and a PARAFAC analysis up to

30 min. Although not used here, data compression techni-

ques, e.g. wavelets [35], could be used to reduce memory

requirement and computation time.

4. DATA PREPARATION

The experimental data were available as a movie stored on

video tape. In order to apply statistical methods to the data, it

was necessary to transform the raw data into a form suitable

for computational analysis. This involved digitization and

reconciliation.

4.1. Digitization
Digitization is the procedure by which the information on

the magnetic tape is transformed into a series of numbers

capable of being stored by a computer. This was carried out

using a Hauppauge WinTV video card and software (Haup-

pauge Computer Works, Hauppauge, NY, USA). As the

movie was played, frames were captured and saved as

‘jpg’ files at a rate of one frame per minute. Whilst a higher

time resolution was possible, current limitations of computer

memory during the subsequent computational analyses

prohibit this at present. Each frame had a spatial resolution

of 768� 1024, with three wavelengths (red/green/blue) per

pixel. This means that an experimental run lasting 51 min

produced a movie array of size 768� 1024� 3� 52, where

the first frame is measured at t¼ 0 [15].

4.2. Reconciliation
Reconciliation is the procedure by which the irregular raw

data images are transformed in such a way that they are

ready for computational analysis. This involves removing

irrelevant information from the images and rotating and

resizing the images so they can by stored in regular data

arrays. The frames of a movie array should be congruent;

that is, in each image, corresponding pixels should refer to

the same point in space.

A typical raw data image for this experiment is shown in

Figure 2. The diffusion tank is seen in the middle of the

image, surrounded by parts of the experimental set-up (gas

diffuser, water bath, light screen, etc.). As we are interested

only in the uptake process occurring within the diffusion

tank, it was necessary to select only this part of the image,

discarding the irrelevant information. Prior to this, however,

it was necessary to correct for image rotation, caused by the

camera not always being entirely straight in relation to the

diffusion tank (the camera was removed and replaced in

between experimental runs).

To correct for image rotation, the surface of the water in

the diffusion tank was used as a reference line. An image

showing the edges in the raw image was generated using the

Sobel method [36] with a threshold level of 0.015, as shown

in Figure 3. A rectangular area around the surface of the

water in the diffusion tank was then selected and the Radon

transform [37] was applied to this subimage. The Radon

transform determines the angles of the principal edges

within the image by projecting the image intensities onto a

radial line oriented within a given range, e.g. � 2�. In this

case the angle at which a maximum projected intensity is

found corresponds to the angle of deviation of the line

defined by the water’s surface from the top border of the

image, found to be 0.525� for Figure 2. This angle was then

used to rotate all the images within the same experimental

run, it being assumed that the first frame is representative of

the entire movie.

After rotation the next step was to remove the background

region not useful for analysis of the uptake process, a pro-

cedure known as cropping. Again the first frame was used to

represent subsequent frames within the same movie. The

cropping was done manually, the aim being to include as

much of the diffusion tank as possible whilst excluding

irregularities at the sides and bottom of the tank.

Finally, after rotation and cropping, it was found that

movies from different experimental runs were left with

different sizes along the height and width dimensions. In

order to standardize the movies, each frame was resized

using bicubic interpolation to have spatial resolution

300� 600. Thus, after reconciliation, experimental run 1

gave a data array of size 300� 600� 3� 52.

Figure 2. Rawdataimage fromexperimentalrun 4, frame1 [14].

Figure 3. Sobeledgedetectionof theimageshownin Figure 2.
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Four frames from experimental run 1 are shown in

Figure 4. The entry of CO2 into the tank from a thin layer

close to the water’s surface is seen after 2 min (Figure 4(a)).

After 4 min (Figure 4(b)), three distinct mushroom-shaped

regions can be seen which, after 9 min (Figure 4(c)), start to

fill the entire tank with the exception of a space on the right-

hand side. The diffusion of CO2 throughout the tank con-

tinues and, after 30 min (Figure 4(d)), CO2 is spread homo-

geneously throughout the tank.

5. ANALYSIS OF SINGLE IMAGES

In this section the use of PCA is compared with PARAFAC

as a tool for the analysis of single, multivariate images.

Frame 5 from experimental run 1, shown in Figure 4(b), is

used as an example image for demonstrating the results of

the analyses. This frame is held in a data array with dimen-

sions 300� 600� 3.

5.1. Principal component analysis
A PCA was performed on the frame, first unfolding the array

into a 180 000� 3 matrix, and two components, explaining

99.99% of the variation in the data, were retained. No

centering or variable rescaling was used, although the pre-

processing of image data is discussed later on in Section 7.1.

As no mean centering of the data was performed prior to

PCA, a very high percentage of the data is described by the

first PC alone [19]. This PC (not shown here) describes the

average intensity image, similar to a gray-scale version of the

original image. The reconstructed score image for the second

PC is shown in Figure 5, where the mushroom-shaped

diffusion of CO2 into the saline solution and the thin layer

of high CO2 concentration near the surface are shown in high

contrast. This can be understood by looking at the PCA

loadings, shown in Figure 6. The loadings for both PCs,

but especially PC 2, clearly distinguish between green and

violet (red/blue), these being the two colors present in the

diffusion tank. PC 2 shows more clearly than the original

image the contrast between the high- and low-pH areas. The

model residuals (not shown here) are very noisy and distin-

guish between red and cyan (blue/green).

5.2. PARAFAC
A PARAFAC was performed directly on the same multi-

variate image, with no unfolding being necessary. The core

consistency diagnostic [38] indicated that two PCs were

optimal. These explained 99.87% of the variation in the

data—still very high, but lower than for PCA. The PAR-

AFAC loadings describing the height, width and wavelength

dimensions are shown in Figure 7. The loadings describing

the wavelength dimension, C, are almost identical to those

found for PCA; both components, but especially the second

(broken line), distinguish between the colors green and

violet.

PARAFAC gives two sets of loadings, A and B, which

describe the height and width dimensions respectively.

Although it is possible to plot these loadings individually,

as in Figure 7, it is also possible to reconstruct images from

the PARAFAC loadings in a similar way as for PCA, but in

this case by plotting arb
T
r . The first PARAFAC component

image, shown in Figure 8(a), describes an area of high light

intensity centered at the top center of the image, with the

bottom left and right corners of the image being darker. This

component represents a background effect present through-

out this movie caused by the inability of the light source

(situated behind the diffusion tank) to provide uniform

illumination across the image space. Although not clearly

apparent from the original image (Figure 4(b)), this back-

ground effect can be seen more clearly in some of the other

frames from this and other experimental runs.

The second PARAFAC component is shown in Figure 8(b)

and describes the CO2 uptake, in particular the thin layer of

high concentration at the top of the tank, the wider region

below this layer and the three vertical bands where CO2 is

moving towards the bottom of the tank. The image is rather

abstract, owing to the limited ability of low-dimensional

linear models to describe complex shapes, and features such

as the mushroom shape of the bands are lost (cf. Figure 5).

5.3. Discussion
In finding structure in the wavelength dimension, both PCA

and PARAFAC yield very similar results. Both models find

the main feature present, i.e. the contrast between the high-

pH (green) and low-pH (violet) factors present in the image.

Although the second PCA component provides a useful

enhancement of the original images, in general, the advan-

tages of PCA are more apparent when images with a higher

number of wavelengths per pixel are being analyzed, such as

spectrophotometric images, where the advantages of a com-

pression of the wavelength dimension are greater. In the case

of color images, which have only three wavelengths per

pixel, it is possible to augment the spectral range by adding

transformed variables [9], but this was not thought to be

useful here.

The way in which PCA and PARAFAC model the spatial

features of the image is very different. By treating each pixel

as an independent element, ignoring contextual information

within the image, PCA effectively focuses on finding structure

in the wavelength rather than in the spatial dimensions. This

means that whilst PCA is good at highlighting regions of the

image with different spectral features, it does not discriminate

between different structural features in the image, this being

left to the user. The PARAFAC model looks for structure in

both the wavelength and the spatial modes. This means that

far fewer parameters are used by the model (PARAFAC uses

903 parameters per component; PCA uses 180 003), but that

less variation in the data is explained. PARAFAC is able to

find only structurally simple factors in the data: either smooth

background effects or simplified representations of physico-

chemical factors such as the bands seen in Figure 8(b).

However, the ability of the PARAFAC model to identify

factors without forcing the images to be orthogonal was

seen to uncover an important aspect of the data not exposed

by PCA, i.e. the background illumination effect.

6. OTHER SINGLE-IMAGE
TRANSFORMATIONS

Multivariate modeling techniques such as PCA and PAR-

AFAC reduce the dimensionality of large, collinear data sets.
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Figure 4. Frames (a) 3, (b) 5, (c) 8 and (d) 31ofexperimentalrun1 [14].
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As demonstrated for color images, PCA is not very efficient

as it reduces only the dimensionality of the wavelength

mode, which is already low. PARAFAC reduces the dimen-

sionality of both the wavelength and spatial modes, but it is

only able to describe structurally simple features. Some other

single-image transformations which were found to be useful

are now described.

6.1. Mapping
One important use of chemical image analysis is the ability to

build maps for chemical properties of specific interest. The

use of multivariate calibration is already well established in

chemistry as a method for determining ‘difficult-to-measure’

chemical responses, such as compound concentration, using

‘easy-to-measure’ information, such as near-infrared spectra.

This approach can be applied within chemical imaging to

give information about the distribution of a chemical sub-

stance (or a chemical property) within an inhomogeneous

region. Examples may be the distribution of an active com-

pound within the filler during a powder blending process;

moisture content of a food sample; or the presence of a

fouling substance on a surface catalyst surface. If a good

calibration model can be made between the chemical re-

sponse of interest and the spectral information provided by

the imager, then it is relatively simple to construct a uni-

variate (or, in the case of multiple responses, multivariate)

map from a multivariate image.

In the example of the CO2–water transfer experiment, we

are interested in the distribution of dissolved CO2 within the

diffusion tank, this being directly related to pH which, in

turn, is related to the color of the solution. Thus the idea is to

transform the multivariate color images into univariate pH

maps [15] (C. G. de Faria and E. M. Lage, in preparation). For

each set of experimental runs a separate data set was

recorded consisting of images of the same water/indicator

solution at known pHs. For the data considered here, seven

color/pH calibration images were available. A one-compo-

nent partial least squares (PLS) [39] model was sufficient to

describe 98.94% of the color information and 95.49% of the

pH response information (i.e. R2¼ 0.9549). In order to correct

for intensity differences due to the uneven background

illumination (see previous section), pixelwise normalization

[17] was used prior to PLS modeling, in which each pixel is

scaled to unit length:

x�mnp ¼
xmnpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
p¼1 x

2
mnp

q ð3Þ

The PLS model was then used to transform the color image,

pixel by pixel, into the pH map shown in Figure 9.

It is found that the pH map gives a more accurate

representation of the differences in pH throughout the tank

Figure 5. Reconstructedscoreimage for PC2 (0.15%) fromaPCAontheimageshown
in Figure 4(b).

Figure 6. LoadingsfromaPCAontheimageshownin Figure 4(b).

Figure 7. Loadings from a PARAFAC on the image shown in
Figure 4(b).
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than is possible by a simple visual inspection of the original

color image [14] (C. G. de Faria and E. M. Lage, in prepara-

tion). The pH map is also more efficient than the PCA

representation given in the previous section, because it is a

univariate representation of the one characteristic of specific

interest: pH. Note that, like the PCA method used pre-

viously, mapping reduces the wavelength mode of a multi-

variate image—from three to one in the case studied here—

whilst retaining the full spatial detail.

6.2. Histograms
In classical image analysis, histograms are often used as a

measure of the heterogeneity of a univariate image. Histo-

grams of the pH map shown in Figure 9 and another taken

from the same experimental run, but at a later point in time,

are shown in Figure 10. The first histogram (t¼ 4 min) repre-

sents the heterogeneous distribution as the CO2 begins to

penetrate the tank. The second histogram (t¼ 30 min) repre-

sents the more homogeneous distribution as the CO2 almost

reaches an equilibrium between air and water. The most

important feature of an image histogram is that spatial

information is discarded. This means that information about

how much CO2 has been absorbed is present, but that

information about the distribution of the CO2 within the

diffusion tank has been lost. This allows a large compression

of the data—from a 300� 600 image matrix into a 64� 1

Figure 8. Reconstructed images for (a) PC1 and (b) PC 2 from a PARAFAC on the image
shownin Figure 4(b).

Figure 9. pHmapoftheimageshownin Figure 4(b).
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vector—and could be used to increase the computation speed

for analyses where spatial information is not important.

6.3. Mean profiles
Another simple transformation which may be useful when

the top/bottom or left/right orientations have a chemical

significance is the use of mean profiles calculated by taking

the average across either the height or width dimension of a

univariate image. In the case of the pH maps used here, it is

possible to calculate a mean intensity profile which gives

information on the average concentration of CO2 at a given

depth in the diffusion tank. These profiles are shown in

Figure 11, for the top half of the tank, for the frames at 4 and

30 min. It can be seen that the layer near the surface of high

CO2 concentration which is present after 4 min actually

disappears as the uptake process proceeds, and that after

30 min there is actually a thin layer of lower concentration

near the surface.

7. ANALYSIS OF MOVIES

Up to now we have focused on the analysis of single

images—frames of a movie. However, for dynamic pro-

cesses, in which rates and patterns of chemical change are

of interest, it is necessary to consider the movie as a whole.

Given that the resolution of the time mode is sufficiently

high, we would expect to find autocorrelation between the

images which can be modeled and provide information on

the most important changes occurring in time.

A number of possibilities exist for modeling multi-

variate movie arrays. As with the single images discussed

in Section 5, a choice can be made as to whether to model

the spatial dimensions explicitly, using a quadrilinear

PARAFAC model, or whether to first unfold the spatial

dimensions and build a trilinear PARAFAC model on the

height �width�wavelength� time array. In cases where images

have different dimensions (uncommon for movie arrays, but

possible when comparing multiple images in general), a

further approach based upon the simultaneous decomposi-

tion of a series of covariance matrices has been described in

the literature [14].

One disadvantage of approaches which use the entire

data array during the modeling stage is the large memory

and computational burden. If possible, it is advantageous

to first use image processing techniques, such as those

described in the previous section, in order to transform

the data to lower-dimensional arrays whilst retaining the

essential information content present in the data. For the

data discussed here, the pH mapping technique provides a

meaningful preprocessing of the data in which the wave-

length dimension is eliminated but the information pertain-

ing to the distribution of CO2 is retained. For this resultant

univariate movie consisting of only three dimensions

(height�width� time), the two options used here are (a) to

build a trilinear PARAFAC model or (b) to unfold the data

and build a PCA model on the height �width� time array.

7.1. Centering and scaling
Before describing the modeling of the movie array, a few

words about the centering and scaling of movie arrays is

appropriate. The subject of how to scale and center multiway

arrays in general has already been addressed in the literature

[23,40,41]. In the context of multivariate images, one form of

scaling which as already been described here is pixelwise

normalization, a technique for removing variation due to

inhomogeneous illumination across the image space,

although other types of scaling also exist [17]. Centering of

multivariate image arrays is not always performed in the

literature. However, for image arrays in which a time dimen-

sion is present, centering across this dimension can be useful.

Two particularly useful centering options for chemical mo-

vies in which there is a sense of progression to or from a state

of equilibrium are the subtraction of either the last or first

image from every frame in the movie. For the data studied

here, where the system moves towards a state of equilibrium

in which the CO2 is homogeneously distributed throughout

the final image, centering using this image was applied and

was found to lead to the most interpretable model.

7.2. PARAFAC
The multivariate movie was transformed into a movie of

univariate pH maps using the mapping procedure. The

last image was then subtracted from each frame and a

Figure 10. Histograms taken from the pH maps for experimental
run1, frames 5 and 25.

Figure 11. Mean intensity profiles taken from the pH maps forex-
perimentalrun1, frames 5 and25.
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two-component PARAFAC model was calculated, found to

explain 98.82% of the data. The loadings for the time dimen-

sion are shown in Figure 12 and the reconstructed images are

shown in Figure 13. The two components are found to

describe two distinct features of the movie. The first compo-

nent (Figure 13(a)) describes almost exclusively the pH

difference between a thin layer (approximately 3 mm) of

high CO2 concentration at the surface of the water and the

rest of the tank. This difference starts at a maximum and

gradually decreases towards zero at the end of the run,

where the CO2 distribution is homogeneous (see component

1 in Figure 12). The component corresponds to known theory

that gas uptake occurs in two stages: first, the air–water

boundary is crossed; next, the gas is transported through the

system by diffusion and/or turbulence. In the absence of

turbulence, as in this investigation, the second stage is

relatively slow, occurring in sporadic ‘bursts’ in an appar-

ently chaotic process.

The second component (Figure 13(b)) describes an effect

specific to this experimental run, that of the uneven spread of

CO2 throughout the tank leading to a ‘hole’ right of center, as

seen in the original movie frame at t¼ 7 min (see Figure 4(c)).

The loadings profile for this component moves to zero

towards a peak at t¼ 9 min, after which it fades back to

zero as the CO2 distribution becomes more homogeneous

(see component 2 in Figure 12).

Although not presented here, movies from other experi-

mental runs, analyzed using the same methodology, exhib-

ited the same pattern: one component describing the

boundary layer and the other component describing a feature

particular to the specific experimental run being analyzed. In

some cases a component describing a general CO2 flux from

the top to the bottom of the tank is found, although for the

run described here this is not the case (with only a slight

gradient from top to bottom being visible in Figure 13(a)).

7.3. PCA
As a comparison, PCA was performed on the same data by

first unfolding the array. The model described 99.06% of the

data, and the loadings and score images are shown in

Figure 12. Loadings describing the time dimension from a PAR-
AFACofthemovie.

Figure 13. Reconstructedimagesfor (a) component1and (b) component 2 fromaPARAFAC
of themovie.
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Figures 14 and 15 respectively. Whilst the same features—

and interpretation—are found, in this particular case the

clarity of interpretation is slightly diminished owing to the

need for the model to satisfy an orthogonality constraint.

This (a) forces the second component describing the time

dimension (broken line in Figure 14) to dip below zero for

the first 6 min and (b) causes a slight mixing of the two main

features (i.e. the CO2 layer and the ‘hole’) between the two

score images. One possible solution to this problem is to

employ a bilinear decomposition which uses alternative

parameter constraints to identify the model [42–45].

8. CONCLUSIONS

In this paper the application of PARAFAC has been shown

to be a useful approach for the analysis of multivariate

images, offering a latent variable decomposition different

from, and in some cases complementary to, the alternative

PCA approach. One fundamental point in question is

whether a linear decomposition of the spatial dimensions

of an image, in addition to the wavelength and/or time

dimensions, is beneficial. The answer is obviously highly

dependent on the images being analyzed. Complex spatial

forms do not lend themselves well to low-dimensional,

linear decompositions, and the PCA approach leaves the

spatial recognition part of model interpretation to the human

(who is usually good at this). However, in cases where the

important factors in the images can be described by simple

decompositions, such as the CO2 surface layer or the smooth

(and not immediately perceivable) background effect found

in this study, a discrimination between these spatial factors

using different components can lead to an advantage

in interpretation. Three-dimensional images, i.e. height�
width� depth, are already common in other fields (e.g. brain

scans), and a model which retains the spatial correlation

information could prove to have some advantages over

methodology in which spatial (auto)correlation is ignored.

Figure 14. Loadingsdescribing the time dimension froma PCAof
themovie.

Figure 15. Reconstructedscoreimagesfor (a) component1and(b)component2 fromaPCA
ofthemovie.
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A general approach for the analysis of time-resolved

image data has been presented. The multivariate modeling

of movies has been successfully used to identify features

with different dynamic profiles. It can easily be envisaged

that by fitting kinetic models to the profiles found, as has

already been done within standard spectrometry [44,45],

imaging could be used as a means of identifying chemical

constants such as diffusion rates. Application of this meth-

odology is not limited to video imaging, but is relevant to

any form of chemical imaging in which measurement at

regular time intervals is possible.

As has already been documented, one of the major pro-

blems in image analysis is the computational burden levied

by the huge data arrays being produced. Whilst multivariate

modeling techniques such as the subspace decompositions

described here can play an important role, it is also useful to

consider how image analysis and processing techniques—of

which the histogram and mapping tools illustrated here are

only a small part—can be used to extract the relevant

chemical information from the data. One challenge in che-

mical imaging will be the combination of the multivariate

statistical analysis methods already proving successful in

chemistry with the vast range of image analysis tools already

available in the image analysis sciences.
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fer and the carbon budget of the North Atlantic. Philos.
Trans. R. Soc. Lond. B 1995; 348: 211–219.

25. Sarmiento JL, Toggweiler JR, Najjar R. Ocean carbon-
cycle dynamics and atmospheric pCO2. Philos. Trans. R.
Soc. Lond. A 1988; 325: 3–21.

26. Jähne B, Haussecker H. Air–water gas exchange. Ann.
Rev. Fluid Mech. 1998; 30: 443–468.

27. Phillips LF. Experimental demonstration of coupling of
heat and matter fluxes at a gas–water interface. J. Geo-
phys. Res. 1994; 99: 18577–18584.

28. Wanninkhof R, Asher W, Weppernig R, Chen H, Schlos-
ser P, Langdon C, Sambrotto R. Gas transfer experiment
on Georges Bank using two volatile deliberate tracers. J.
Geophys. Res. 1993; 98: 20237–20248.

29. Erickson III DJ. A stability dependent theory for air–sea
gas exchange. J. Geophys. Res. 1993; 98: 8471–8488.
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