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Abstract

A quantitative structure–activity relationship (QSAR) study on 48 peptidic HIV-1 protease inhibitors was performed. Fourteen a priori
molecular descriptors were used to build QSAR models. Hierarchical cluster analysis (HCA), principal component analysis (PCA) and
partial least squares (PLS) regression were employed. PLS models with 32/16 (model I) and 48/0 (model II) molecules in the training/external
validation set were constructed. The a priori molecular descriptors were related to two energetic variables using PLS. HCA and PCA on
data from model II classified the inhibitors as slightly, moderately and highly active; three principal components, the chemical nature of
which has been highlighted, are enough to describe the enzyme–inhibitor binding. Model I (r2 = 0.91, q2 = 0.84) is comparable to
literature models obtained by various QSAR softwares, which justified the use of a priori descriptors.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Understanding quantitative structure–activity relation-
ships (QSAR) more profoundly includes understanding the
difference in dimensionality of molecular representations
and of descriptors (i.e. if they are 1D–3D), as is discussed
by Van de Waterbeemd and Testa[1]. The benzene molecule
(Fig. 1) can be represented with formula (molecular rep-
resentation) C6H6 (1D object), chemical diagram with a
regular hexagon (2D object), or structural formula showing
molecular planarity (3D object). A 1D formula can give
only 1D data (molecular mass, numbers of atoms as in
Fig. 1 left, other scalars). A 2D formula (Fig. 1 middle)
produces 2D data (2D matrices of topological descriptors,
etc.), and 3D representation enables the extraction of 3D
data (volume[2] or spatial distribution of some property in
the form of 3D matrices,Fig. 1 right). Macroscopic proper-
ties are in most cases 1D in form (although describing 3D

� The paper was presented in the 13th European Symposium on Quan-
titative Structure–Activity Relationships: Rational Approaches to Drug
Design, Düsseldorf, Germany, 27 August to 1 September 2000. The com-
panion paper, Part II, which interprets a priori molecular descriptors in
terms of molecular graphics and modeling, is in this issue of the journal.
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events), so 2D and 3D data are usually reduced to their 1D
forms (Fig. 1 bottom) retaining their 2D and 3D meaning.

QSAR procedures can generate hundreds of 1D–3D, etc.
descriptors usually transformed into 1D forms (“classical”
QSAR). All these procedures, from the simplest to the most
sophisticated, are useful. However, some disadvantages in
applying sophisticated QSAR software might be pointed out:
(1) treatment of the program as a black box; (2) availability
and price; and (3) incompletely interpreted results in publi-
cations. For instance, are the descriptors only mathematical
concepts or physical properties too complicated to be under-
stood in terms of chemical effects? Ideally, the descriptors
should be chosen on the basis of mechanistic considerations
or they should be amenable to mechanistic interpretation[3].

Some new trends in QSAR attempt to overcome these
difficulties. First, use of extensive or exclusive calculation
of descriptors derived only from chemical structures has be-
come standard. Second, “non-empirical structural variables”
[4], various 1D–3D descriptors like topological indices
[5,6], geometrical or shape descriptors, quantum chemical
and others are also now used extensively. Third, exclusion
of 3D structural descriptors and use of topological indices
(mainly 2D variables) only. These are fast and easy to cal-
culate, encode useful information about various aspects of
molecular architecture (size, shape, branching and cyclicity
[6]), can be interpreted in terms of quantum mechanics[7].

1093-3263/02/$ – see front matter © 2002 Elsevier Science Inc. All rights reserved.
PII: S1093-3263(02)00201-2
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Fig. 1. Benzene molecule. An illustrative example on dimensions of molecular formulas, derived molecular descriptors, and reduced representationof
the descriptors. From the linear, planar and spatial “formula” for the benzene molecule can be derived molecular descriptors with maximum dimension
1D (example: number of carbon atoms), 2D (example: number of carbon–carbon bonds by counting all bounded atomic connections) and 3D (example:
molecular volume calculated employing a 3D Riemman summation[2] defined by some set of non-bonding atomic radii), respectively.

Fourth, use of “simple” molecular descriptors[8,9] (1D and
2D), such as number and weight fraction of atomic types,
chemical bonds, rings, functional groups, and other indica-
tor variables is a way to simplify and return chemical sense.
Topological indices and other 2D descriptors show to be at
least as efficient as 3D descriptors in QSAR[4,10–12].

In this work, an a priori approach is introduced, a QSAR
methodology where only simple, a priori variables (“known
before” any sophisticated, computer-assisted calculation) are
employed. A priori variables are generated by hand-count or
pocket-calculator using 1D and 2D chemical formulas. The
3D atomic coordinates, structural and extensive databases
are not used. The procedure of generation of some a priori
variables might appear similar to Hansch and Free–Wilson
analyses[13], but there are conceptual differences: (1) the
intuitive way of defining descriptors; (2) minimal use of lit-
erature data for additive properties; (3) only a few indicator
variables used; (4) no exhaustive variable selection required;
(5) use of other models besides multiple linear regression
(MLR). The results from a sophisticated QSAR methodol-
ogy, comparative binding energy (COMBINE)-QSAR study
on HIV-1 protease inhibitors[14–16] were compared with

this a priori study’s results.1 The 48 peptidic inhibitors un-
der study (Figs. 2–4) have four (P1, P′

1, P2, P′
2) substituents

[17] (scheme inFig. 4). PCA, hierarchical cluster analysis
(HCA) and partial least squares (PLS) results in this work
are discussed in terms of the a priori approach and of HIV-1
protease–inhibitor binding. The a priori approach is a help-
ful tool for QSAR interpretation in terms of basic chemical
concepts and can comprise an initial QSAR to be followed
by more sophisticated investigation.

2. Methodology

2.1. Calculation of molecular descriptors

QSAR data are inTables 1–3. Molecular descriptors for
49 HIV-1 protease inhibitors were generated on the basis
of 1D and 2D formulas (Figs. 2–4). Only X6 andX12, were

1 A new HIV-1 protease inhibitor lopinavir, approved by US FDA,
appeared as a pure drug and in combination with ritonavir (a mixture
called kaletra) after the submission of this work.
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Fig. 2. A 2D representation of HIV-1 protease inhibitors1–24.
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Fig. 3. A 2D representation of HIV-1 protease inhibitors25–48.
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Fig. 4. A 2D representation of HIV-1 protease inhibitors49–60 and schematic representation of inhibitor side chains (substituents) P1, P′
1, P2, P′

2 and
R1, R2 separators in the inhibitors1–60. Besides saquinavir,39 four more inhibitors indinavir50, ritonavir 51, amprenavir52 and nelfinavir53 are
clinically approved in combination with HIV-1 reverse transcriptase inhibitors. The inhibitors54–60 were modeled by modifying the structure of34.

Table 1
Definition and description of the variables used in regression models

Symbol Definition and description

Y In vitro inhibition activity [14], pIC50 = −log IC50
X1 or Mr Relative molecular mass
X2 A number of non-� valence electrons: the number is equal to the count of�-bonds together with the free electron of heteroatoms
X3 Number of non-hydrogen atoms in planar fragments: this includes aromatic rings and fragments with double bonds
X4 Number of chemical bonds excluding the bonds with hydrogen
X5 Number of valence electrons per atom
X6 Non-� valence electron surface densityX2/S, whereS is van der Waals molecular surface area as a sum of literature surface

area increments for atoms and groups[16]
X7 Number of non-hydrogen atoms in ring systems: this includes both aromatic and aliphatic rings
X8 Number of groups CXn, n = 0, 1, 2, and 3, where X=H or halogen; C from C=O groups is excluded
X9 Effective number of substituents based on the following rules: (a) number is 4 for molecule where the substituents are in

position with respect to the central chain line as in1 (standard molecule); (b) if one or two substituents are missing, the
number is 3 (33, 35, 44–48) or 2 (43), respectively; (c) the number is 3.5 if one of the substituents is smaller (12, 18, 19, 22,
25, 30, 32) or in opposite orientation (28, 29, 36) than in the standard; if the substituent is even smaller, the number is 3.25
(21 and 42); (d) the number is 3.5, if one of the substituents is sterically hindered by some little group or atom (by CH3 in 2,
23, 24; by H in 40), or via bigger group linked to the main chain (with C=O in 14; with aliphatic ring in38)

X10 Number of potential hydrogen bonds: number of donors (OH, NH, NH2) + number of acceptors (OH, C=O, –O–)
X11 Effective number of ring substituents (both aromatic and aliphatic) based on the same rules as forX9: (a) number for molecule

1, the standard, is 3; (b) number isX14-1 for most of the molecules (1–11, 13–20, 23–33, 35, 36, 38, 39, 44, 46–48) because
one substituent is a non-ring system, while for others are special rules as follows; (c) number is 4 when all the substituents
are rings (34, 41); (c) number is 3.5 also for some molecules (37—a small ring substituent,40—sterically hindered ring); (d)
number is 3 also for some molecules (42—a small non-ring substituent,45—one substituent missing); (e) number is 2.5 also
for one molecule (21—a non-ring and a small ring substituent present in the structure); (f) number is 2 also for some
molecules (12 and22—two non-ring substituents present in the structure,43—only two substituents present and they are rings)

X12 or Vpol The van der Waals volume of polar groups (C=O, –NH2, –NH, –N–, –CF3, –S–, –OH, –O–, –NO2, –I) estimated as van der
Waals molecular volume as sum of literature volume increments for atoms and groups[16]

X13 The length of the total “aromatic vector”: number of atoms in localized, delocalized and aromatic�-systems, and the number
of atoms with free-electron pairs (N, O, S), and number of C atoms in CHm groups (m = 1, 2, or 3) which can participate in
hyperconjugation all these are summed asLi for some well-defined molecular fragment (Li = 1, if atom is alone); since such
fragments are separated with aliphatic groups and are supposed to be independent (orthogonal), they can be understood as
aromatic vectors whose summation gives (Σi Li

2)1/2 and represents the measure of total (hetero)aromaticity
X14 Similar to X13, the total number of non-� electrons that can be involved in “aromatic vectors”, what includes: (a)�-electrons

of aromatic systems; (b) two electrons for C=C and C=O bonds; (c) two electrons for –N– in aliphatic chains; (d) four
electrons for –S–, –O–, –OH; (e) eight electrons for –NO2; (f) two electrons for CHm (m = 1, 2, or 3)

Z1 Refined AMBER total interaction energy for HIV-1 protease–inhibitor complexes[14]
Z2 Electrostatic contribution to the free energy of solvation of inhibitor[14]
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Table 2
HIV-1 protease inhibitor activity and molecular descriptorsX1–X8

Number y12 X1 X2 X3 X4 X5 X6 (Å−2) X7 X8

1 9.602 544.694 32 30 43 2.650 0.05395 21 31
2 8.113 558.721 32 30 44 2.627 0.05202 21 32
3 9.721 588.748 34 30 46 2.644 0.05287 21 33
4 9.585 612.693 32 31 47 2.843 0.05099 21 32
5 9.638 570.732 33 32 45 2.643 0.05260 21 33
6 9.222 634.647 32 30 48 3.025 0.05174 21 31
7 9.538 558.721 32 31 44 2.627 0.05225 21 32
8 9.509 559.709 33 31 44 2.659 0.05526 21 31
9 9.569 589.692 38 33 46 2.780 0.06140 21 31

10 5.532 454.569 26 23 37 2.657 0.05283 15 24
11 9.796 560.694 34 31 44 2.691 0.05658 21 31
12 7.561 494.634 33 26 38 2.622 0.06074 15 27
13 9.143 670.591 32 30 44 2.725 0.05104 21 31
14 8.266 572.705 35 32 45 2.707 0.05701 21 31
15 9.276 545.682 33 30 43 2.684 0.05640 21 30
16 9.602 576.760 34 30 44 2.691 0.05525 21 31
17 9.770 600.802 32 31 47 2.565 0.04735 21 35
18 6.943 502.657 30 29 39 2.613 0.05309 18 29
19 8.021 494.634 27 26 38 2.622 0.04923 17 27
20 7.465 528.695 30 30 42 2.608 0.05143 21 31
21 6.161 546.710 32 29 42 2.610 0.05203 18 31
22 6.793 512.649 29 26 38 2.623 0.05023 12 26
23 7.179 574.721 35 34 46 2.667 0.05503 21 32
24 6.673 558.721 32 30 44 2.627 0.05202 21 32
25 6.914 510.677 26 22 39 2.557 0.04526 18 28
26 9.155 558.721 32 30 44 2.627 0.05219 22 32
27 9.745 560.694 34 30 44 2.691 0.05663 22 31
28 7.392 560.694 34 30 44 2.691 0.05663 22 31
29 6.886 544.694 30 30 42 2.608 0.05143 21 31
30 6.836 516.684 30 29 40 2.590 0.05116 18 30
31 10.000 560.694 34 30 44 2.691 0.05639 21 31
32 7.413 532.683 32 29 41 2.633 0.05379 18 30
33 6.230 468.596 26 23 36 2.629 0.05076 17 25
34 9.161 618.777 38 38 51 2.705 0.05843 30 37
35 6.246 440.542 26 23 34 2.688 0.05507 15 23
36 8.886 542.679 33 32 43 2.692 0.05638 21 31
37 10.222 558.678 34 30 45 2.734 0.05902 26 31
38 5.897 584.759 32 30 47 2.621 0.05018 27 34
39 9.638 670.856 37 32 53 2.646 0.05037 26 34
40 8.268 683.896 35 28 55 2.602 0.04634 31 37
41 10.267 683.896 35 28 55 2.602 0.04634 31 37
42 7.277 669.912 33 29 53 2.538 0.04398 26 37
43 5.168 532.814 12 8 52 2.319 0.01914 20 29
44 5.523 501.713 19 15 41 2.434 0.03268 16 27
45 8.116 575.795 25 23 38 2.505 0.03915 25 33
46 6.640 559.709 33 30 44 2.659 0.05477 21 31
47 5.328 484.639 26 22 36 2.560 0.04821 12 26
48 5.862 500.638 28 22 37 2.605 0.04949 12 26
49 4.523 508.705 24 22 40 2.494 0.04105 18 30
50 <8.0 613.804 35 30 49 2.609 0.05521 27 34
51 ≈8.9 706.943 39 39 53 2.711 0.05273 22 28
52 ≈9.2 491.605 30 22 36 2.776 0.05626 17 23
53 ≈8.7 538.749 27 22 41 2.476 0.04192 22 29

calculated as additive properties using fragment increments
[18]. X9–X11 were obtained by counting based upon ob-
served logical activity–2D structure rules. In accordance
with previous studies[14,15], these descriptors were gener-
ated with the assumption that the maximum number of pro-
tease subsites (pockets) occupied by inhibitors is four. The

2D formulas[14–19](Figs. 2–4) contain some stereochem-
ical (3D) information as the drawings are made according
to the graphical representation rules recommended by IU-
PAC [20]. Inhibitor 49, which was presented but not used
in the analysis in previous work[14], is not included in the
PCA nor in the external validation set in PLS. However,
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Table 3
HIV-1 protease inhibitor molecular descriptorsX9–Z2 and Ypred activity

Number X9 X10 X11 X12 (Å3) X13 X14 Z1 (kcal mol−1) Z2 (kcal mol−1) Ypred

1 4.00 9 3.0 73.4 16.126 48 −80.56 −10.13 9.280
2 3.50 9 2.5 73.4 15.395 46 −76.15 −9.26 7.372
3 4.00 11 3.0 83.8 16.155 52 −84.12 −11.52 9.932
4 4.00 9 3.0 89.0 16.126 48 −82.76 −10.56 9.128
5 4.00 9 3.0 73.4 17.464 50 −82.74 −11.90 9.405
6 4.00 9 3.0 99.4 16.126 48 −79.56 −10.46 9.152
7 4.00 9 3.0 73.4 16.971 50 −81.92 −9.98 9.417
8 4.00 10 3.0 80.9 16.523 50 −81.36 −12.57 9.633
9 4.00 11 3.0 96.9 16.703 56 −84.51 −11.97 9.954

10 3.00 9 2.0 73.4 14.526 40 −67.78 −9.37 5.971
11 4.00 11 3.0 83.8 16.523 52 −81.53 −11.77 9.969
12 3.50 9 2.0 73.4 14.832 44 −74.17 −9.25 6.935
13 4.00 9 3.0 109.1 16.523 48 −83.14 −10.37 9.387
14 3.50 10 2.5 90.9 17.088 50 −81.17 −10.20 7.957
15 4.00 9 3.0 79.6 16.126 48 −81.85 −11.26 9.288
16 4.00 9 3.0 90.9 16.583 52 −80.40 −10.34 9.430
17 4.00 9 3.0 73.4 16.971 50 −85.76 −10.02 9.297
18 3.50 7 2.5 63.0 15.395 44 −73.56 −9.90 6.822
19 3.50 9 2.5 73.4 13.416 44 −75.20 −10.03 7.373
20 4.00 7 3.0 63.0 16.093 44 −77.68 −9.79 8.595
21 3.25 9 2.5 73.4 13.454 46 −70.79 −10.08 6.595
22 3.50 10 2.0 90.9 13.416 42 −69.82 −9.39 6.984
23 3.50 9 2.5 84.2 16.583 54 −75.61 −10.30 7.500
24 3.50 9 2.5 73.4 13.454 46 −78.84 −10.86 7.031
25 3.50 9 2.5 73.4 11.489 40 −74.83 −9.14 7.085
26 4.00 9 3.0 73.4 16.126 48 −81.09 −11.51 9.264
27 4.00 10 3.0 77.1 16.126 52 −82.53 −12.36 9.591
28 3.50 10 2.5 77.1 16.126 52 −76.09 −11.32 7.895
29 3.50 7 2.5 63.0 14.000 42 −76.80 −9.78 6.532
30 3.50 7 2.5 63.0 15.362 42 −75.58 −9.62 6.798
31 4.00 11 3.0 83.8 16.155 52 −82.20 −10.95 9.966
32 3.50 9 2.5 73.4 15.395 46 −74.16 −10.56 7.484
33 3.00 9 2.0 73.4 14.900 38 −65.12 −11.31 6.977
34 4.00 10 4.0 76.6 19.723 60 −88.28 −11.66 11.160
35 3.00 9 2.0 73.4 14.526 40 −61.83 −10.86 6.008
36 3.50 9 2.5 73.4 23.452 48 −79.81 −10.65 8.794
37 4.00 10 3.5 77.1 16.155 52 −83.26 −11.86 9.948
38 3.50 8 2.5 71.1 15.395 46 −66.18 −11.57 7.035
39 4.00 10 3.0 112.6 19.494 52 −86.00 −16.79 9.863
40 3.50 9 3.5 91.3 19.105 50 −81.48 −13.08 9.185
41 4.00 9 4.0 91.3 19.105 50 −91.73 −12.74 10.880
42 3.25 8 3.0 87.6 19.975 42 −80.34 −10.59 7.816
43 2.00 6 2.0 61.6 7.141 20 −73.94 −5.02 1.929
44 3.00 7 2.0 62.4 9.539 28 −70.77 −7.78 4.631
45 3.00 8 3.0 72.6 14.036 38 −80.71 −9.40 6.811
46 3.00 10 2.0 78.6 16.126 50 −72.88 −13.86 6.224
47 3.00 7 2.0 60.9 14.491 38 −68.08 −9.04 5.362
48 3.00 10 2.0 73.6 11.489 40 −66.90 −10.99 5.733
49 3.50 7 2.5 63.0 11.489 34 −72.19 −8.51 6.372
50 4.00 9 3.0 78.2 16.852 50 – – –
51 4.00 11 3.5 127.3 20.591 62 – – –
52 3.50 10 2.5 82.4 13.675 38 – – –
53 3.00 13 3.0 86.6 19.672 38 – – –

when literature models take into consideration49, this
molecule is included in our best PLS for comparative pur-
poses. Furthermore, since there are now five HIV-1 protease
inhibitors clinically approved by US FDA Department[19],
and one of them is saquinavir39, the QSAR variables were
derived for all of them (indinavir50, ritonavir 51, ampre-

navir 52, nelfinavir53). The averages of their experimental
activities (IC50 values)[19] were expressed as pIC50 val-
ues and then normalized with respect to pIC50 for 39 [14]
(Table 1). This procedure, although not entirely accurate,
gives approximate and normalized values for pIC50. In
vitro pIC50 for four of these five inhibitors, measured in
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the same experimental conditions, range from 7.2 to 8.7
[21].

2.2. Chemometrics

HCA and PCA[22] were carried out using autoscaled
data. PLS[22] was performed to build two models: 32/16
(model I, to be comparable to literature models) and
48/0 molecules (model II, to be consistent with the PCA
and HCA analysis) in the training/external validation set.
The cross-validation strategy in the validation step was
leave-two-out. The Pirouette software[23] was used for
all chemometrics calculations. Predictions, based on model
I, were made also for49–53. Two energy variables (AM-
BER total interaction energy for HIV-1 inhibitor complexes
and the electrostatic contribution to the free energy of sol-
vation of substituent (Table 3) from COMBINE-QSAR
treatment[16]), were treated as dependent variables and
related (through PLS models) to the selected variables for
48 molecules.

3. Results and discussion

Results are presented inTables 3–7andFigs. 5–8. HCA
plots are inFigs. 5 and 6. PCA plots are inTable 4and
Fig. 7. PLS results are inTables 3 and 5–7andFig. 8.

Table 4
Principal component analysis for 48 samples and 14 variables

PCs PC1 PC2 PC3

Variance% 56.49 21.86 7.58
Cumulative variance 56.49 78.21 85.79
X1 or Mr 0.269 0.325 0.234
X2 0.331 −0.141 −0.086
X3 0.316 −0.163 −0.260
X4 0.216 0.405 0.141
X5 0.224 −0.295 0.244
X6 0.215 −0.427 −0.163
X7 0.247 0.352 −0.131
X8 0.263 0.346 −0.192
X9 0.292 −0.112 −0.102
X10 0.212 −0.255 0.397
X11 0.285 0.208 −0.130
X12 or Vpol 0.233 0.016 0.687
X13 0.294 −0.014 −0.188
X14 0.306 −0.224 −0.136

Table 5
Comparison of a priori models with those from literature[14]

Model Samples Variables PCsr2 q2 SDEPcv SDEPex

Camber 32 48 2 0.89 0.70 0.72 0.83
Cdelphi 32 47 2 0.90 0.73 0.69 0.59
Cexpanded 48 54 2 0.91 0.81 0.66 –
A priori I 32 14 3 0.91 0.85 0.51 1.12
A priori II 48 14 3 0.87 0.77 0.76 –

SDEPcv: SDEP (standard error of prediction) of cross-validation, SDEPex:
external SDEP.

Table 6
Experimental and predicted activities (pIC50 values) for the five clinically
approved inhibitors

Sample Name Yexp Ypred

39 Saquinavir 9.638 9.863
50 Indinavir 8.0 9.370
51 Ritonavir 8.9 11.159
52 Amprenavir 9.2 7.741
53 Nelfinavir 8.7 9.234

Table 7
The regression vectors for a priori models I and II

Xi ci (model I) ci (model II)

X1 or Mr −0.0122 −0.0274
X2 −0.0266 −0.1337
X3 −0.1156 −0.1014
X4 −0.0234 −0.0177
X5 −0.0224 −0.0073
X6 0.0070 −0.0759
X7 0.0016 −0.0107
X8 −0.0068 −0.0021
X9 0.4682 0.5728
X10 0.2269 0.2309
X11 0.3173 0.4447
X12 or Vpol 0.0296 0.0103
X13 0.1799 0.1337
X14 0.0997 0.0333

Fig. 5. Hierarchical cluster analysis on 14 variables.H1, H2 andH3 are
sub-clusters of the big cluster, andH4 is the other, small cluster. This
division is based on similarity index 0.50.
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Fig. 6. Hierarchical cluster analysis on 48 samples.G1 is one cluster,
and G2, G3 and G4 are sub-clusters of the other cluster.

3.1. Biological activity distribution

The biological activity distribution (log units of pIC50)
reveals three gaps >0.39, and four groups: 5.158–6.246 (10,
21, 33, 35, 38, 43, 44, 47, 48), 6.640–7.561 (12, 18, 20,
22–25, 28–30, 32, 42, 46), 8.021–8.268 (2, 14, 19, 40, 45),
8.886–10.267 (1, 3–9, 11, 13, 15–17, 26, 27, 31, 34, 36, 37,
39, 41). A more regular distribution results when the second
and third groups are joined, as has been observed in plots of
YversusXi . The three groups are characterized by distinctive
effective number of substituentsX9 (around 3, 3.5, and 4, re-
spectively). This descriptor has the highest correlation with
activity (0.862). In terms of relative activity (IC50rel, with re-
spect to that of43, IC50 = 6.792�M), the first group (group
I) can be named slightly active (IC50rel ≈ 1–12), the second
(group II) moderately active (IC50rel ≈ 30–1300), and the
third (group III) highly active (IC50rel ≈ 5200–126 000).

3.2. Classification of the molecular descriptors

A subset of 14 of approximately 30 descriptors were
selected. Two descriptors were derived from 1D formula

or well-known atomic constants (X1 and X5); others were
directly counted from 2D formula and atomic valence (X2
and X4); the rest were based on 2D formulas and chemi-
cal knowledge (stereochemistry from these formulas). The
1D phenomena are described byX1 andX5, 2D events are
related only toX2, X4, X7, X8, X13, X14, and the rest are
related to 3D events. There are five electronic descriptors
(X2, X5, X6, X13, X14), two steric–geometrical (X9, X11),
two electronic–geometrical (X10, X12), one compositional
(X1), one hydrophobic (X8) and three topological (X3, X4,
X7) descriptors. OnlyX5 andX6 are intensive descriptors.

3.3. Hierarchical cluster analysis

The dendogram on variables (Fig. 5) consists of two clus-
ters: a larger (sub-clustersH1–H3) one and a smaller one
(H4). The two clusters are distinguished according to the
internal structure of the data (behavior aroundY versusXi

regression line).H4 consists of four variables which point
out mainly the molecular size (X1, X4), shape (X4, X7, X8)
and interactions that have no specific direction in space (hy-
drophobic interactions,X7, X8). Pairs of descriptors (X1,
X4 and X7, X8) indicate structural similarity of inhibitors
(the same class of peptidic inhibitors), and that most of the
rings (substituents P1, P′

1, P2, P′
2, especially P1 and P′1)

are mainly hydrophobic[17,24–26]. Similarly, hydrophobic
amino acid residues (Tyr, Pro, Phe, Leu, Ala, Met) of the
natural substrates occupy the protease cleavage sites[24].
The descriptors in clusterH3 (X5, X10, X12) tend to be
more related to electronic properties such as charge distri-
bution, polarity, potential hydrogen bonds. This is in ac-
cordance with the fact that electronegative atoms and po-
lar groups in P2, P′

2, and especially hydrogen bonds are
essential for HIV-1 protease–inhibitor binding[17,24–29].
H2 expresses the complexity of the protease–inhibitor in-
teraction with characteristics like molecular size, topology,
steric and conformational properties in terms of two sim-
ple variables (X9, X11). H1 represents addition details of
the electronic distribution, especially the role of non-� elec-
trons (aromatic, localized, conjugated, free-electron pairs,
electrons from CHm groups in hyperconjugation) responsi-
ble for the phenomenon of aromaticity and heteroaromatic-
ity [30,31]. Clustering ofX2, X3, X14 (similarity index 0.8)
shows that planar fragments are those contributing mostly to
the non-� electrons. Such (hetero)aromatic and free-electron
pair fragments have two important functions. First, they are
frequent constituents of compact and/or planar structures
(rings) which fit easily into cavities and establish numerous
intermolecular interactions. Secondly, having more diffuse
electrons, they participate in polar interactions and hydrogen
bonds, and also in non-polar interactions (van der Waals and
other weak interactions). The cluster analysis on the samples
(Fig. 6) shows molecules roughly grouped into two clusters
with respect to the activity and molecular size.G1 (16 sam-
ples:10, 12, 18–20, 22, 25, 29, 30, 33, 35, 43–45, 47, 48)
is characterized by low and moderately active compounds.
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Fig. 7. Principal component analysis on 48 samples using 14 variables. Top: PC2 vs. PC1. Bottom: PC3 vs. PC1. Legend for the activity groups I–III is
shown.

Members of this set tend to be the smallest molecules in the
set (Mr = 440–476), with common structural features in-
cluding: both the substituents (P1, P′

1, P2, P′
2) are small or

missing, there is no –OH on P′
2, or P′

2 can be a small ring
or a small acyclic systems. This obviously reduces the bi-
ological activity. The other, larger cluster consists of three
sub-clustersG2 (15 molecules:1, 2, 5, 7, 14, 17, 21, 23,
24, 26, 28, 32, 36, 38, 46), G3 (9 molecules:3, 8, 9, 11,
15, 16, 27, 31, 37) and G4 (8 molecules:4, 6, 13, 34–39,
40, 41, 42). G2 consists of molecules with medium activity.
The molecules can be structurally characterized with respect
to molecule1 as follows: (a) isomers of1 or close struc-

tural analogs (21, 32, 36, 46); or (b) having an additional
hydrocarbon group (2, 5, 7, 17, 24, 26, 28, 38), or (c) hav-
ing polar groups at P1, P2 which causes sterical hindrance
of these substituents (14, 23). G3 consists of highly active
molecules with an electronegative atom more than in P2, P′

2
of sample1 (O or N atom).G4 includes primarily highly
active molecules, which are the biggest molecules of the
set (Mr = 613–684) and have large P′

1, P2, P′
2 substituents.

Four two-membered sub-clusters (similarity index 0.95) in-
clude isomers (10, 33; 2, 24; 7, 26; 11, 31) and three have
structurally very similar molecules (18, 30; 1, 7 or 1, 26;
8, 27).
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Fig. 8. Correlation between experimental and calculated activities (pIC50 values) according to the PLS model I. The training set included 32 molecules,
and the external validation set 16 molecules (solid triangles). The activity groups are represented by white circles (group I), triangles (group II)and
squares (group III).

3.4. Principal component analysis

The PCA results are listed inTable 4. The first three
principal components (PCs) are enough to describe the data
set (85.85% of the total variance explained). PC1 roughly
separates highly active (group III) inhibitors from slightly
active ones (group I), while the moderately active are in
the middle (group II) (seeFig. 7). The boundaries of these
groups are at PC1≈ −3.3 and 0.6, with seven samples be-
ing displaced:21—isomer of1 (P2 is not closed ring);38—
has a cyclic amide fragment inside the main chain, what
causes sterical hindrance to P′

2; 40—a hydrogen atom in a
small P1 ring disables this ring to be completely exposed to
the protease;23—there is –CO2CH3 instead of –OH in P′2,
what reduces its hydrogen bonding and the flexibility of P′

2.
Steric factors are known to reduce biological activity, which
is likely why some molecules are less active than expected
(28, 14, 42). The first two PCs confirm the trends found in
HCA. The first three PCs (Table 4) reveal the contribution
of molecular descriptors to particular PCs: all the variables
are important for PC1 (their coefficients vary in the range
0.21–0.33) with higher contributions fromX2, X3, X9, X11,
X13 andX14, which is in accordance with the HCA results.
PC1 is a general PC, closely related to biological activity,
and is well expressed in terms of molecular size (cavity,
bulk properties) and contents of various types of valence
electrons (electronic and hydrophobic properties). The least
(43, 44, 47) and the most active compounds (34, 39–41) in
Fig. 7 show that the best inhibitors have maximal effective
number of rings and substituents (X9 = 4.0), they are rich
in �-electrons and other non-� electrons from heteroatoms.

PC2 mainly includes shape and electronic variables (X1, X4,
X6 andX8 from H4) pointing out the complexity of steric
and electrotopological properties resulting in activity. PC2
separates more-branched (top:40–45) from less-branched
molecules (bottom:9, 10, 12, 35, 22, 58, etc.) (seeFig. 7).
Polar groups are most important for PC3 (the most signif-
icant variables areX10 and X12 from H3). PC3 separates
molecules (relatively to the size of their hydrocarbon parts)
rich in electronegative atoms and polar groups (top;43,
22, 48, 6, 13, 39, etc.) from those having more hydro-
carbon (aromatic or aliphatic) fragments (bottom:20, 29,
30, 18, 34, etc.). Thus, PC3 describes the fine (valence
electron) distribution of electron density—polarity and hy-
drogen bond properties. Good inhibitors, besides being
electron-rich, have aromatic and hydrophobic fragments.
This is in accordance with the fact that hydrophobic in-
teractions are more extensive in number of contacts and
contact surface areas than polar interactions. However,
the latter are preferable and energetically more favorable
[24–26,29,32]. PCA, like HCA, demonstrated that only a
few types of molecular properties such as steric/bulk/cavity,
electrostatic/electronic/polarity, lipophilic (hydrophobic),
hydrogen bonding, electrotopological properties are respon-
sible for drug–receptor interactions, as was well illustrated
by Waterbeemd et al.[33].

3.5. Partial least squares regression models

PLS results for models I and II, using 32 and 48 inhibitors
in the training set, are inTables 3 and 5. Both models are
comparable with the models of Pérez et al.[16] which used
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two PCs and obtained betterr2, q2 and cross-validation
standard error of prediction (SDEPcv) for 48 samples in the
training set than when using 32 samples; their validation was
done as random leave-five-out repeated 20 times, which can
lead to lowerq2 and higher SDEP than the leave-one-out
method[16]. To minimize this difference with respect to
our models, a leave-two-out cross-validation algorithm was
used. Their Cdelphi model (32 samples) had six inhibitors
(five in the external validation set) with relative error greater
than 10% in log units; the average absolute error of predic-
tion was 0.49 (log units) for the validation set and 0.40 for
all 48 samples; the outliers with the highest relative error
were 33 and 37, underpredicted by an order of magnitude
in IC50 units (�M). A priori model I has seven inhibitors
(one in the training set) with relative error greater than
10% (Table 3); the average absolute error is 0.77 for the
validation set, and 0.46 for 48 samples; the outliers with
the greatest relative error (Fig. 8) are43 and34 (the former
underpredicted by three, and the latter overpredicted by
two orders of magnitude in IC50 units). Inhibitor43 has no
phenyl groups as substituents (P1, P′

1), being the smallest
and the weakest inhibitor. The36 is moderately active and
electron-rich, but due to an additional double bond in its
chain it has reduced flexibility that is required to fit into the
protease active site. Cdelphi predicted activity better than a
priori I for 25 molecules. For 22 inhibitors the prediction is
reversed. For one molecule the predictions are equal. In the
external validation set, seven are predicted better by a priori
I and for nine are reversed. The advantages of Cdelphi model
come from incorporated AMBER and electrostatic terms for
inhibitor–protease interaction, inhibitor desolvation and sol-
vation[16]. These terms require extensive computer-assisted
calculations and so could not be used in an a priori model.
OPTIMOL-MM2X model [14] revealed linearity between
pIC50 and inhibitor–protease interaction energy (r2 = 0.78,
q2 = 0.76, SDEPcv = 0.68, SDEPex = 1.18) for inhibitors
1–32, 49 in the training set and33–48 in the external val-
idation set). The equivalent a priori model I (including49,
r2 = 0.90, q2 = 0.81, SDEPcv = 0.63, SDEPex = 1.68)
predicted 22 molecules better than OPTIMOL-MM2X; in
the validation set, 10 molecules are better predicted by a
priori I.

All these comparisons place a priori I model in between
Cdelphi and OPTIMOL-MM2X model. It is worth compar-
ing a priori I to two promotional MLR models obtained by
two commercial QSAR software packages of the SciVision
company: SCIQSAR3.0[34] and QSARIS[35]. The same
data set was used by both packages as an illustration of their
applicability. SCIQSAR3.0 used 30/8 inhibitors in the train-
ing/external validation set and five descriptors in their best
model (r2 = 0.87, SDEPcv = 0.50, no other data available).
The best model of QSARIS used 33/15 molecules in the
training/validation set and only two descriptors (r2 = 0.65,
q2 = 0.57, SDEPcv = 0.86, SDEPex = 1.49). Only six in-
hibitors are predicted better than by the equivalent a priori
I in the training set, and five in the validation set.

Hansch and co-workers[36] built a linear regression
model with three molecular descriptors and 30 molecules
in the training set (the set1–31, 49 excluding24, 28). This
model (r2 = 0.82, q2 = 0.76, SDEPcv = 0.69) is not
more quantitatively accurate than a priori model I (with the
same molecules in the training set:r2 = 0.90, q2 = 0.80,
SDEPcv = 0.67). The49 was predicted by Holloway et al.
[14] (pIC50 = 5.532) better than with a priori I (pIC50 =
6.372). The49 is an outlier with the highest residual due
to its highly hydrophobic, non-planar cyclohexanyl P′

2.
Table 6shows experimental and predicted activities for the
five clinically approved inhibitors39, 50–53. The predic-
tions refer to the group III of highly active inhibitors (with
the exception of52). Underprediction of amprenavir52 by
more than one, overprediction of indinavir50 and ritonavir
51 by one to two orders of magnitude in IC50 units, can be
considered fairly good taking into account the fact that there
are no experimental data for all 53 inhibitors measured at
the same conditions.

The regression vector coefficientsci of a priori models
I and II are inTable 7. The set1–32 (used for model I)
is structurally more homogeneous than1–48 (referred to
model II). In spite of that, the regression coefficients for both
models are quite similar, meaning that a priori descriptors
are able to generate a robust model. The highest coefficients
refer to X9 (c9 > 0.45), X11 (c11 > 0.30), X10 (c10 >

0.22), X13 (c13 > 0.13) andX3 (c3 > 0.10), showing that
hydrogen bonds (related toX10 and partially toX13) and
hydrophobic interactions (described byX9, X11 and partially
by X13) are predominant in protease–inhibitor binding. The
(hetero)aromaticity variableX13 and the number of atoms
in planar fragmentsX3 take fourth and fifth places. This
indicates that new, more efficient HIV-1 protease inhibitors
should contain four substituents (mostly ring systems) rich in
polar and hydrophobic groups able to participate in electron
delocalization. Model II shows the predictional power of the
whole set1–48, which was extensively described by HCA
and PCA.

3.6. Relationships with energetic variables

EnergyZ1 is closely correlated with variablesX4, X7–X9
andX11 (data: 48 molecules, 14 variables), what is in accor-
dance with high correlation betweenZ1 and the anti-viral
activity [14,16]. Three PCs are enough to describe the data,
and such PLS models are quite sufficient (32/16 molecules
in the training/external validation set, 14 variables;r2 =
0.88, q2 = 0.76, SDEPcv = 2.21 kcal mol−1 across the
range 29.90 kcal mol−1). According to the regression vec-
tor coefficients forX7–X11, hydrophobic and polar groups,
molecular size and shape seem to be significant. EnergyZ2
is correlated with extensive variablesX2, X3, X10 and X13
which describe polarity and valence electron distribution
(hydrophobic, hydrogen bond properties). This is to be ex-
pected due to the nature of inhibitor–polar solvent (water)
interactions. PCA with six PCs describes the data well (over
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90% of the variance; 48 molecule, 14 variables), and the
corresponding PLS model (32 molecules and 14 variables;
q2 = 0.48, r2 = 0.72, SDEPcv = 0.70 kcal mol−1 across
a range 8.84 kcal mol−1) points out the highest contribution
of X10–X13 in the regression vector. The electrostatic contri-
bution to the free energy of desolvation of the receptor upon
complex formation from the COMBINE-QSAR study[16]
shows correlation with variablesX2, X3, X14 (in both scales
of desolvation energy). The relationships of a priori descrip-
tors with these energetic variables describing solvation and
desolvation phenomena indicates that the a priori variables
contain some latent information on interactions including
solvent.

4. Conclusion

Fifty-three HIV-1 protease inhibitors, of which 49 were
peptidic inhibitors, were described by a priori molecular
descriptors, and their anti-viral activities were studied by
means of chemometrics, where biological activities for 49
inhibitors having been measured under the same experimen-
tal conditions. The chemometric analysis of data for 48 in-
hibitors demonstrated that the biological activity (more pre-
cisely: enzyme–inhibitor binding) is a 3D phenomena in
terms of principal components: the first PC is a general PC
(bulk, electronic and hydrophobic properties), the second
describes stereochemical fit to enzyme (steric and electro-
topological properties) and the third is related to distribution
of electron density (polarity and hydrogen bonding). The in-
hibitors are conveniently grouped as slightly, moderately and
highly active compounds. In the light of a priori descriptors,
a good peptidic inhibitor should have four aromatic and/or
ring substituents rich in polar and hydrophobic groups. Four-
teen a priori molecular descriptors of various chemical na-
ture (electronic, steric–geometrical, electronic–geometrical,
compositional, hydrophobic, topological) well characterized
the studied inhibitors and two PLS models were built and
successfully compared with those from literature.
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