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The quality of epoxidized soybean oil (ESO), industrially used as a
plasticizer and heat stabilizer for PVC � lms, is given by the degree
of epoxidation (EI), the number of double bonds expressed as the
iodine index (II), and the water percentage in the � nal product. In
this work, near-infrared (NIR) spectra recorded off line at the
chemical industry during the epoxidation process, combined with
the multivariate regression method partial least squares (PLS), was
used for the quanti� cation of EI, II, and water percentage in the
ESO. The water levels were determined by the Karl Fischer titra-
tion. The content of iodine was determined by iodometry. The ep-
oxide index was obtained by the hydrogen bromide reaction with
the epoxide ring. On average, 50 samples were used to model each
analyte and 10 were used for external validation. The results, ex-
pressed in terms of the statistical parameters RPD (ratio of stan-
dard deviation of experimental concentrations to the standard de-
viation of the residuals) and RER (ratio error range), were excellent
for the EI (26.02 and 80.70, respectively). For the water % and II,
the obtained results were fairly good. Good correlations between
predicted and real concentrations were attained (0.984, 0.966 and
0.974 for water %, II, and EI, respectively). It is shown in this work
that the use of NIRS combined with chemometric methods are of
great importance, especially for industrial purposes.

Index Headings: Soybean oil; Near-infrared spectroscopy; NIRS;
Poly(vinyl chloride); PVC; Chemometrics; Partial least squares;
PLS.

INTRODUCTION

Soybean oil is a triglyceride that typically contains
14% stearic, 23% oleic, 55% linoleic, and 8% linolenic
acid. Three of these are unsaturated acids: oleic (18:1),
linoleic (18:2), and linolenic (18:3) (Scheme I).1

Chemical modi� cation of commercially available soy-
bean oil, such as epoxidation, can enhance its properties
(reactivity) for certain industrial applications. In a fully
epoxidized soybean oil, the linolenic acid with three dou-
ble bonds (positions 9, 12, and 15), is more reactive than
linoleic, which contains two double bonds per molecule.

Epoxidation of fatty acids is a reaction of a carbon–
carbon double bond with an active oxygen, usually from
a peroxide or a peracid, which results in the addition of
an oxygen atom, converting the original –C5C– bond
into a three-membered epoxide (oxirane) ring.2 The ep-
oxidized soybean oil (ESO) is extensively used in the
plastic industry as a plasticizer to increase � exibility in
poly(vinyl chloride) (PVC) products and as a stabilizer
to minimize their decomposition. Materials such as PVC
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and polystyrene frequently contain epoxidized oil at lev-
els ranging from 0.1 to 27%.3

It is known that PVC undergoes decomposition with
increasing temperature (dehydrochlorination). During the
thermal decomposition, hydrogen chloride is eliminated
from PVC, conjugated double bonds are formed, and the
process is followed by a change in the polymer’s color-
ation, which goes from yellow to orange, red, brown, and
� nally black (Scheme IIa).4

The epoxide ring from ESO reacts with hydrogen chlo-
ride generated by polymer degradation and restores the
labile chlorine atoms back into the polymer’s chains.
(Scheme IIb).4 This prevents PVC from further dehydro-
chlorination and preserves its color.

In order to follow the soybean oil epoxidation process,
it is necessary to quantify three analytes related to the
product’s quality and process ef� ciency. The epoxide in-
dex (EI) is directly related to the stabilizer feature of the
product: the higher the epoxide index, the more ef� cient
will be the additive as a thermal stabilizer. The iodine
index (II) is an indicator of the amount of unsaturation
present in the epoxidized soybean oil, which is unknown
a priori. The unsaturated bonds are halogenated and the
reagent excess is quanti� ed by iodometry. The water per-
centage resulting from washing of the � nal product in the
industrial process is another important analyte. Its con-
centration must be minimal, since water causes degra-
dation of the epoxide group (Scheme III). 2

Near-infrared spectroscopy (NIRS) has been success-
fully used during the last decade in a wide range of anal-
yses for quanti� cation purposes in industry.5–10 Spectral
features in this region are due to molecular absorptions
of overtones and combinations of fundamental vibrational
bands in the mid-IR region. Band assignments are not
easy to interpret due to the fact that in this region one
single band results, in general, from a combination of
severely overlapped vibrations. The combination bands
have been far more commonly misassigned than the over-
tones.11 The low molar absorptivity (weak absorption
bands) and broad band absorbance peaks are other short-
comings of the method. Although this wavelength region
is only of limited value for detailed qualitative structure
interpretation (as opposed to mid-infrared), it has been
extensively used recently for the quantitative analyses of
compounds containing OH–, NH–, and CH– functional-
ities.12 Several qualities of NIR spectroscopy have made
it an appealing alternative to many traditional chemical
methods since it needs little or no sample preparation,
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SCHEME I. Soybean oil structure and its substituted fatty acids.

SCHEME II. (a) PVC degradation caused by sunlight, eliminating HCl;
(b) reaction of oxirane ring with HCl inhibiting the degradation process. SCHEME III. Degradation of epoxide group by water.

has low cost, is not time consuming, and allows multiple
analyses from one spectrum.13 On the other hand, NIR
spectroscopy wouldn’t have become so popular without
the availability of powerful computers and chemometric
software for data analysis.

The spectral data used in this work were recorded off
line at the chemical industry during the soybean epoxi-
dation process. Calibration models were obtained for the
three analytes (epoxide index, EI, iodine index, II, and
water), and partial least squares (PLS) was the multivar-
iate regression method 14–16 selected for the modeling.

MATERIALS AND METHODS

Karl Fischer titration, using a Methrom Karl Fischer
Automat E547 and a Multi Dosimat E415, was the meth-
od used for measurement of low levels of water in the
oils. In this method, water is converted stoichiometrically
by the addition of iodine in the presence of sulfur diox-
ide, methanol, and a suitable base (pyridine) in excess.
Sulfur dioxide is oxidized by iodine in the presence of
water. In methanol solution, Karl Fischer reagent acts in
a two-step reaction where, for each incoming water mol-
ecule, one iodine molecule is consumed (Scheme IV).
The results are expressed in terms of water percentage,
and for ESO the acceptable levels are below 0.3%.17

The content of iodine was determined by halogenation
(with 0.2 M bromine solution) of the ESO double bonds.
Mercury(II) acetate was added as a catalyst to reduce the
reaction time (Scheme V), and the excess of bromine
solution was determined by iodometry. The result is giv-
en in terms of grams of iodine per 100 g of the product
(ESO), and it is a measure of the quantity of unconverted
–C5C– double bonds. The maximum level acceptable for
industrial purposes is 4.0 g iodine/100 g sample.2

There is no practical way to separate the epoxidized
esters in ESO from esters with double bonds or from
other fatty by-products, particularly because epoxidized
groups, double bonds, and other (by-product) groups may

be present in the same fatty triglyceride molecule. Hence,
the efforts to improve the quality of ESOs and other fatty
epoxide products have been focused on processes that
optimize the conversion of the –C5C– double bonds into
epoxide groups while minimizing the formation of by-
products.2 The determination of epoxide index in this
work is based on the hydrogen bromide synthesis, by
reaction of tetraethylammonium bromide with 0.1 M
perchloric acid. Hydrogen bromide opens the epoxide
ring by bromination and a hydroxyl group is formed
(Scheme VI). The end point of the reaction is signaled
by the color change of the indicator used, caused by the
presence of free hydrogen bromide (produced by the ex-
cess of perchloric acid) after all epoxide groups have
been consumed. This method measures the content of ep-
oxide groups and thus the conversion to the desired prod-
uct. The percentage of epoxide must be higher than
6.3%.2

Near-infrared absorbance spectra were recorded from
9500 to 4500 cm21 with a 2 cm21 increment, using a
Bomem MB160 FTIR spectrophotometer. The number of
samples differs for each analyte. Figure 1 shows a generic
recorded spectrum.

Calibration models were constructed using the PLS
method.14–16 In this method, the regression model is built
relating the X block of independent variables, given by
the spectra, to the y vector given by the analyte concen-
trations. PLS is a projection method, which uses the pro-
jection of the matrix X onto a lower dimensional orthog-
onal basis, or at least, a linear independent set, i.e., XW
5 T , where W and T are the projection and score ma-
trices, respectively. W is determined such that T has the
property of maximum covariance with y.

The PLS models were validated through the leave-one-
out cross-validation procedure and also by using external
data sets in order to verify the ability of the models in
future predictions. For internal validation, the goodness
of the model can be assessed by the standard error of
cross-validation (SECV) parameter de� ned in Eq. 1.

1/2 1/22é ù(y 2 y )ê úO i,exp i,pred PRESS
ê úSECV 5 5 (1)ê ú [ ]n në û

where n is the number of samples used in the calibration
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SCHEME IV. Reactions involved in the water percentage determination.

SCHEME VI. Reactions involved in the epoxide index determination.

SCHEME V. Reaction of a double bond halogenation, for iodine index
determination. FIG. 1. Generic recorded spectrum of epoxidized soy bean oil (ESO).

set, y i,exp is the known concentration for the ith sample,
and y i,pred is the predicted concentration by the model built
without sample i.

External data sets were also used to evaluate the per-
formance of the models for prediction. The ratio of stan-
dard deviation of experimental concentrations to the stan-
dard deviation of the residuals, RPD, and the ratio error
range, RER,18 given by Eqs. 2 and 3, respectively, were
used for this purpose. Both of these terms compare the
range of variation of the analyte of interest in the external
validation set to the standard error of prediction.

std(c )expRPD 5 (2)
std(c 2 c )exp pred

range(c )expRER 5 (3)
std(c 2 c )exp pred

Here, std is the standard deviation, cexp are the experi-
mental concentrations of samples from the external val-
idation set, cpred are the corresponding values estimated
by the calibration model, and range(cexp) represents the
range of experimental concentrations.

In order to reduce the size of the data set, a boxcar
averaging19 was applied to the raw data. In this method,
one group of wavenumbers is replaced by its median and
the respective intensity is represented by the average in-
tensity of the group. The window size for the boxcar
averaging was chosen to be 15 cm21. The PLS method
was applied to this new data set, using mean centering
as a preprocessing method. Variable selection was per-
formed in two different ways. In the � rst (Selection A),
the loadings and regression vector plots were simulta-
neously analyzed. The loadings express the relationship
between the spectral variables and the principal compo-
nent axes, which are used to build the PLS model. The
regression vector contains the coef� cients of the model,
indicating which variables contribute to the prediction.
Those variables with near zero values in both regression
vector and loadings can be excluded since they will not
contribute signi� cantly to the modeling and prediction.
In the second method (Selection B), the variables were
selected by subtracting the spectrum of the sample with
the highest analyte concentration from the spectrum of
the sample with the lowest concentration of the same an-
alyte. Only the spectral regions where the differences
could be observed were included in the PLS model. For
the method with smaller standard error of cross-validation
(Selection A/B), the correlogram was applied. The cor-

relogram is a plot of the wavenumber variables against
their correlation coef� cients with respect to the analyte
concentration.20 The selected variables correspond to
those wavenumbers that show a correlation coef� cient
higher than a given cutoff value. Pirouette (Infometrix,
Woodinville, WA) and PLS p Toobox 2.0 (Eigenvector
Technologies, West Richland, WA) for MATLAB y (The
MathWorks, Nattick, MA) were the software used to car-
ry out the data analysis.

RESULTS AND DISCUSSION

Water. A set of 61 samples was used for this analyte,
51 of them in the calibration set and the other 10 in the
external validation set. After boxcar averaging, the raw
data (2400 variables) were reduced to 160 variables. The
water percentage in this data set (in the range 0.02–
0.45%) is characterized by samples distributed in three
groups. The main group has a large number of samples
with low analyte concentration (0.02–0.1%). The other
group consists of 4 samples with water % in the range
of 0.1–0.2%, and the last one has 2 samples with water
% above 0.4%, which is higher than the acceptable level
(0.3%). These last samples represent situations that are
not very common, but could be reached in industry, and
consequently, they cannot be considered outliers. The re-
sults for the PLS model using 160 variables are shown
in Table I.

The variable selection followed the procedure de-
scribed previously in the methodology. The loading and
regression vectors for Selection A are shown in Figs. 2a
and 2b. For Selection B, which uses the spectral differ-
ence, those variables where the differences can be ob-
served were selected (see Fig. 2c). The model obtained
from variable Selection B had the highest correlation co-
ef� cient (0.990) and was chosen for further analysis.
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TABLE I. PLS results for water.

Method
#

Variables
Latent

var. SECV PRESS R

Boxcar averaging
Selection A
Selection B
Correlograma

External val.b

160
65
22
3
3

4
3
3
2
2

0.013
0.012
0.012
0.016
0.018c

0.008
0.008
0.009
0.014
0.003

0.986
0.987
0.990
0.984

aVariable selection by the correlogram applied to Selection B for cutoff
5 0.95.

bExternal validation using PLS model with variables selected from the
correlogram and 2 LVs.

cSEP (standard error of prediction).

FIG. 3. Measured water % vs. the values predicted by leave-one-out
cross-validation for a PLS model with 2 LVs.

FIG. 2. Percentage of water in ESO. (a) Loading vectors. (b) Regression vector for a PLS model with 3 LVs. (c) Spectra showing two samples,
one with high and the other with low water percentage. (d ) Correlogram for the full spectra. The selected wavenumbers are illuminated.

The correlogram was then applied to the data from
Selection B and only those variables with correlation co-
ef� cients greater than 0.95 (cutoff value 5 0.95) were
kept (see correlogram in Fig. 2d). The number of vari-
ables, latent variables, (LVs), and statistical parameters
of the models are shown in Table I.

It can be seen from Table I how it was possible to
construct a parsimonious calibration model with almost
the same residual level, using only 3 variables and 2 la-
tent variables, instead of the 160 used initially. The plot
of measured vs. predicted water % by cross-validation
using 2 LVs can be seen in Fig. 3. Lastly, 10 new samples
were used to test the model. The water percentage of

these samples was predicted under the conditions previ-
ously optimized, and the results obtained are also in Table
I. In Table II, the experimental water %, the respective
predicted values, and the statistical parameters showing
the predictive ability of the model are shown. The stan-
dard deviation of the residuals, 0.019, is lower than the
standard deviation of the experimental values, 0.056, giv-
ing an RPD (see Eq. 2) of 2.94, which seems not so good
since the instrument is predicting the experimental values
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TABLE II. Experimental, estimated, and residual values for water
% in the external validation set.

Sample
Experimental

values
Predicted

values Residuals

9
15
19
27
40
43
44
50
56
60

0.06
0.07
0.05
0.08
0.13
0.16
0.19
0.13
0.06
0.008

0.048
0.059
0.053
0.079
0.147
0.157
0.238
0.114
0.051

20.002

20.012
20.01

0.003
20.001

0.017
20.003

0.048
0.017
0.008
0.008

Mean
Std.
Range
RPDa 2.94

0.094
0.056
0.182

0.094
0.070

RERb 9.49

0.0006
0.019

aRPD 5 std(exp.)/std(residuals).
bRER 5 range(exp.)/std(residuals).

TABLE III. Results of PLS models for iodine.

Method
#

Variables
Latent

var. SECV PRESS R

Boxcar averaging
Selection A
Selection B
Correlograma

External val.b

160
75
35
25
75

5
4
5
4
4

0.272
0.270
0.363
0.462
0.232c

4.454
4.368
7.906

12.821
0.7001

0.955
0.966
0.929
0.922

aVariable selection by the correlogram applied to Selection A for a cut-
off 5 0.35.

bExternal validation using the PLS model from Selection A.
cSEP (standard error of prediction).

FIG. 4. Iodine index in ESO (II). (a) Loading vectors. (b) Regression vector for a PLS model with 4 LVs. (c) Correlogram for the full spectrum.
The selected wavenumbers are illuminated.

slightly better than the standard deviation of the experi-
mental data. On the other hand, the range of experimental
concentrations is high and the RER (see Eq. 3) of 9.49
looks satisfactory.

The three selected wavenumbers are in the region
5090–5280 cm21, which corresponds to the water ab-

sorp tion band. Another spectra l reg ion (7143–6667
cm21), although assigned to water absorption,21 and se-
lected in Selection B, was not found to have much rele-
vance when constructing the � nal calibration model.

Iodine. For the iodine analysis, 73 samples were used
to build the regression model (60 in the calibration set
and 13 for external validation). As before, 160 variables
were selected when applying the boxcar averaging. The
iodine index (II) for these samples is distributed between
2.2 and 6.3 g iodine/100 g sample, with a higher number
of samples with analyte concentration in the range 2.5–
3.5. In this case, there are also some samples with II
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FIG. 5. Measured iodine index vs. values predicted by leave-one-out
cross-validation for a PLS model with 4 LVs.

TABLE IV. Experimental, estimated, and residual values for io-
dine index (II) in the external validation set.

Sample
Experimental

values
Predicted

values Residuals

2
6
9

14
20
26
30
37
50
59
65
68
72

2.98
3.41
3.02
3.25
2.61
3.19
3.38
2.96
3.82
2.45
4.41
4.82
5.85

3.171
3.195
3.050
3.578
2.578
3.087
2.959
2.958
3.741
2.801
4.432
4.804
5.414

0.191
20.214

0.030
0.328

20.032
20.103
20.421
20.002
20.078

0.351
0.022

20.016
20.436

Mean
Std.
Range
RPDa 4.00

3.550
0.959
3.400

3.521
0.856

RERb 14.19

0.029
0.240

aRPD 5 std(exp.)/std(residuals).
bRER 5 range(exp.)/std(residuals).

TABLE V. Results of PLS models for epoxide.

Method
#

Variables
Latent

var. SECV PRESS R

Boxcar averaging
Selection A
Selection B
Correlograma

External val.b

160
65
37
4

65

5
4
4
2
4

0.039
0.033
0.048
0.085
0.017c

0.054
0.039
0.079
0.255
0.002

0.975
0.974
0.965
0.736

aVariable selection by the correlogram applied to Selection B for a cut-
off 5 0.20.

bExternal validation using the PLS model from Selection A.
cSEP (standard error of prediction).

values higher than the value accepted by the quality con-
trol.

For this analyte and the next one, the procedure used
was the same as for water calibration: boxcar averaging,
followed by Selection A, Selection B, and last, the var-
iable selection by the correlogram. The results obtained
can be seen in Fig. 4 and Table III. The correlogram (Fig.
4c), applied to the subset of 75 variables, did not result
in high correlation coef� cients with respect to II, so a
low cutoff value had to be used (0.35). For this analyte,
the � rst selection method, A, gave better SECV and
PRESS values for a model with 4 LVs and a high cor-
relation coef� cient (0.974). From the results in Table III,
it can be seen that for iodine index, 4 LVs were used to
obtain a fairly good calibration model. The plot of ex-
perimental II vs. values predicted by cross-validation can
be seen in Fig. 5.

The external validation was performed using 13 sam-
ples in the model given by Selection A (results in Table
III). From the experimental and predicted II in Table IV,
it can be seen that only three samples are predicted with
an error higher than 10%. For this analyte, the concen-
trations are fairly uniform and the RPD 5 4.00 is an
indication that the instrument is predicting the experi-
mental values better than the standard original data. The
value of RER 5 14.19 con� rms this fact.

The selected variables correspond to wavelengths in
the regions 7430–6600, 6100–5400, and 5100–4500
cm21. The � rst absorption band (7430–6600 cm21) is re-
lated to the combination of stretching and deformation of
C–H bonds and could also be assigned to the –OH � rst
overtone. The absorption band in the region 6100–5400
cm21 is related to the stretching of –CH in ole� ns, while
that of 5100–4500 cm21 is involved in the combined
stretching of C5C double bonds in conjugated chains.22

Epoxide. For the epoxide modeling, 43 samples were
used (35 in the calibration set and 8 for external valida-
tion) and the results are shown in Fig. 6 and Table V.
The epoxide index (EI) takes its values in the narrow
range from 6.21 to 6.61.

Selection A was the method that produced the best
calibration model, and 65 variables were selected in this
step (Figs. 6a and 6b). The variable selection made
through the correlogram (Fig. 6d), with the cutoff value
set at 0.20, did not improve the model. Eight samples

were used for external validation. The PLS model from
Selection A (65 variables and 4 LVs) was used for best
results. The results in Table V indicate that it was pos-
sible to build a model with a very good prediction ability
that was able to follow the quality of the product. The
plot of measured EI vs. values predicted by cross-vali-
dation is shown in Fig. 7.

Table VI shows the measured and predicted EI values
with the respective residuals for the 8 samples from the
validation set. They were all very well predicted (none
of them with an error above 0.5%). For this analyte, both
the ratios RPD and RER yielded excellent results (26.022
and 80.695, respectively, when the ideal ratio is 10 or
higher) indicating accurate analysis, especially when the
analyte concentration varies in a small range.

The selected variables refer to absorption bands in the
region 7100–6800, 5800–5600, 5400–5200, and 5000–
4500 cm21. The � rst region (7100–6800 cm21) corre-
sponds to the � rst overtone from the C–H stretching. The
second one (5800–5600 cm21) is related to the C–H bond
stretching present in fatty acids. The third region (5400–
5200 cm21) could be assigned to the second overtone of
C5O stretching, while the last one (5000–4500 cm21) is
assigned to the combination of C5C stretching in double
bonds. 23

CONCLUSION
It has been shown in this work that the use of NIRS

combined with multivariate regression is a feasible alter-
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FIG. 6. Epoxide index in ESO (EI). (a) Loading vectors. (b) Regression vector for a PLS model with 4 LVs. (c) Spectra showing two samples,
one with high and the other with low epoxide index. (d ) Correlogram for the full spectrum. The selected wavenumbers are illuminated.

FIG. 7. Measured epoxide index vs. values predicted by leave-one-out
cross-validation for a PLS model with 4 LVs.

TABLE VI. Experimental and estimated values and residuals for
epoxide index (EI) in the external validation set.

Sample
Experimental

values
Predicted

values Residuals

2
3

10
15
23
28
41
44

5.73
6.21
6.60
6.56
6.41
6.54
6.47
6.24

5.710
6.199
6.596
6.540
6.415
6.517
6.443
6.234

20.020
20.010
20.004
20.020

0.005
20.023
20.027
20.006

Mean
Std.
Range
RPDa 26.022

6.35
0.29
0.89

6.332
0.288

RERb 80.695

0.013
0.011

aRPD 5 std(exp.)/std(residuals).
bRER 5 range(exp.)/std(residuals).

native to the widely established techniques, especially in
industrial processes. The use of a PLS method was suc-
cessful to construct regression models of high quality. It
has also been shown that by using simple and intuitive
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variable selection methods, such as loadings/regression
vector analysis and the correlogram, the number of var-
iables can be signi� cantly reduced without impairing the
model quality. The statistical parameters used, RPD and
RER, indicated that NIRS determination was accurate for
the EI and fairly good for II. For water % the results
were shown to be satisfactory.

From the results obtained, it can be concluded that the
proposed methodology is appropriate for monitoring the
epoxidation of soybean oil and evaluating the additive’s
quality in the industrial process, where time, effort, and
money are crucial.
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