
Conformational Analysis: A New Approach
by Means of Chemometrics

ALINE THAÍS BRUNI,1 VITOR B. P. LEITE,2 MÁRCIA M. C. FERREIRA1

1Instituto de Química, Universidade Estadual de Campinas UNICAMP, Campinas,
SP, 13083-970 Brazil

2Departamento de Física, IBILCE, Universidade Estadual Paulista, São José do Rio Preto,
SP, 15054-000 Brazil

Received 7 August 2000; Accepted 23 July 2001

Abstract: In conformational analysis, the systematic search method completely maps the space but suffers from the
combinatorial explosion problem because the number of conformations increases exponentially with the number of free
rotation angles. This study introduces a new methodology of conformational analysis that controls the combinatorial
explosion. It is based on a dimensional reduction of the system through the use of principal component analysis.
The results are exactly the same as those obtained for the complete search but, in this case, the number of conformations
increases only quadratically with the number of free rotation angles. The method is applied to a series of three
drugs: omeprazole, pantoprazole, lansoprazole—benzimidazoles that suppress gastric-acid secretion by means of H+,
K+-ATPase enzyme inhibition.
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Introduction

Experimental techniques are limited and are sometimes insufficient
for the study of complex systems. Following recent computa-
tional advances, new methods have been applied to the study of
compounds and reactions in several fields of science. In medic-
inal chemistry and pharmaceutical research, important issues are
structure elucidation, conformational analysis, physico-chemical
characterization, and biological activity determination.1 These is-
sues are helpful for investigating and elucidating how biological
systems evolve and for determining the properties of a given drug.
In these areas, methods of theoretical chemistry provide powerful
tools for investigating and understanding, at a molecular level, the
relationship between chemical structure and biological activity, and
also for providing data for the design of new compounds.2

All chemical information is intimately tied to the three-
dimensional atomic arrangement and to the electronic properties
of specific sites of a given compound.3 The natural way to be-
gin the theoretical study of a given drug is through structural
determination. The main goal of molecular structure determina-
tion is to provide a starting point for understanding the physical,
chemical, and biological properties of matter.4 Each different spa-
tial arrangement of a molecule, known as a conformation, is
defined by the arrangement of its atoms in space, which can
be interconverted by rotation about single bonds.5, 6 There are
several ways to find the spatial arrangement of a molecule. Spec-

troscopic (microwave, Raman, Infrared, NMR) and diffraction
techniques (X-ray, synchrotron, electron, neutron diffraction) are,
among others, widely used experimental techniques for struc-
tural determination. In this study, we will only focus on the
theoretical methods for three-dimensional arrangement determina-
tion.

Systems with many degrees of freedom have thermodynamic
and dynamic properties determined by the nature of their potential
energy surfaces. Analysis of molecular conformation space is used
for locating stable structures of drug molecules. Potential energy
surfaces (PES) can be characterized by their minima, which cor-
respond to locally stable configurations, and by the saddle points
or transition regions that connect the minima.7 – 9 Theoretical cal-
culations can be performed in different ways to find minimum
energy structures, according to the methodology used. A variety
of strategies have been described in recent years. They are capable
of locating minimum energy structures on the conformational po-
tential energy surfaces. The most common strategies are distance
geometry, neural networks, genetic algorithm, simulation methods
(Monte Carlo and Molecular Dynamics) and systematic analy-
sis.
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Distance geometry methods in conformational analysis convert
a set of distance constraints into a set of cartesian coordinates.
The distances are given according to bonded atoms, bond angles,
and torsion angles for free and rigid angles, and any other known
constraints on the system. These distances are taken into a ma-
trix, and the minimum and maximum distances are entered as
the lower and upper bounds, respectively.10 Artificial neural net-
works are based on concepts inspired by the theories of the cell
network of the human brain.11 They have been applied to non-
linear problems and pattern recognition studies. In conformational
analysis, neural networks have been used to predict the maximum
and minimum distances between pairs of heteroatoms.12 Another
way to explore conformational space of molecules is by the use
of genetic algorithms (GA). A GA is a large-scale optimization
algorithm mimicking a biological evolution in a randomly gen-
erated population. In conformational analysis, this population is
formed by a number of conformations. The adaptation is calcu-
lated, and a new population is generated according to operators
(reproduction, crossover, and mutation). The process is repeated
until it converges to a minimum energy structure.13, 14 Monte Carlo
(MC) and molecular dynamics (MD) are simulation methods used
to find the minimum energy structure of a given system. The main
difference between them is in the way the conformational space
is sampled. In MC methods, the configuration is generated ran-
domly by variations on the cartesian or internal coordinates. Each
configuration is accepted or not, according to some algorithm,
usually the Metropolis algorithm. In the Metropolis method, the av-
erage values for a studied structure are Boltzmann weighted.15, 16

In MD methods, system configurations are given by integration
of Newton’s laws for motion over a small time step, and new
atomic positions and velocities are determined.15, 16 In some cases,
a combination of these methods is used to perform a conforma-
tional search.17 Simulated annealing is an example. In this method,
the system is initially set at a high temperature, which is grad-
ually lowered until a configurational minimum is achieved. At
each thermal step, equilibrium is reached by MC or MD im-
plementation in the program.18 All methods described above are
stochastic, in the sense that there is no natural endpoint for search.
Sometimes only a subset of conformational space is explored,
and system convergence is not guaranteed. Some of them may
present difficulties depending on the characteristics of the inves-
tigated system. In general, if only the standard Metropolis Monte
Carlo method is used, it fails in relation to flexible molecules due
the small acceptance rate. There are exceptions in which this dif-
ficulty could be overcome. For example, the MC method has been
successfully used to find minimum energy conformations for cy-
cloalkanes using specific constraint conditions, but such conditions
are used in particular cases, and cannot generally be extended to
unrestricted systems.19 A method that can be extended to both,
restricted and unrestricted systems, proposed by Li and Scher-
aga, combines energy minimization and the Metropolis Monte
Carlo method to study the multiple-minima problem in protein
folding.20

Simulated annealing is another method that may have infinite
temperature steps to be equilibrated, rendering the simulation im-
practical.

On the other hand, there are deterministic methods, which com-
pletely map the conformational space. These methods are known

as a systematic search, in which, for a given starting geometry,
the torsion angles are varied by regular increments.21 However, it
is sometimes impossible to use this method, due to the enormous
combinatorial complexity of the problem. To perform a grid search
in the conformational space, a series of conformations would be
generated by systematically rotating the torsion angles around the
single bonds between 0◦ and 360◦. For each case, the number of
conformations is given by

Number of conformations = sN , (1)

where N is the number of free rotation angles, and s is the number
of discrete values for each rotation angle. This number is given by
360/θi with θi being the dihedral increment of angle i. The number
of conformations increases exponentially with the number of bonds
that have free rotation. This combinatorial explosion is the major
problem involved in a systematic search. There are some strategies
for defeating the combinatorial explosion, for example, building
molecules from aggregates, or by the use of distance constraint
equations, etc. More details are given by Beusen et al.21

This study introduces a new methodology for control of com-
binatorial explosion in systematic searches. Our strategy mini-
mizes computational time by reducing the system’s dimensions.
Quantum chemistry and chemometric methods were combined
to find the best conformational structures, by identifying con-
formations, which correspond to minima on the potential energy
surface.

Data analysis strategies have been published, using chemo-
metrics for handling conformational problems.22 – 25 In medic-
inal chemistry, chemometrics is widely applied in quantitative
structure-activity relationship (QSAR) studies.26 – 28 One of its
applications is the mapping of potential energy surfaces, by the
quantitative visualization of a macromolecular energy funnel.29, 30

Quantitative QSAR studies can also be performed by a combination
of the methods described earlier.31 – 33

The PCA-reduced search introduced in this study is a systematic
conformational analysis. The dihedral increment to be taken is not
less than usually used in the literature for a complete systematic
search, which is believed to be sufficient to avoid any gross varia-
tion in between. Another advantage of the proposed methodology
is that because one of the principal components refers to the sur-
face rugosity, it can also be used as a validation criterion. In this
way, one can be sure that the potential energy surface is completely
explored. If the combinatorial explosion problem is controlled, the
grid can be sufficiently refined on the minimum energy regions, as
it is shown in this article. Thus, no information about minimum
energy configuration is lost.

Systems Studied

The proposed method was used to investigate the conformational
analysis of three drugs: omeprazole, lansoprazole, and pantopra-
zole (Fig. 1). These drugs are substituted benzimidazoles, which
suppress gastric-acid secretion by means of H+, K+-ATPase
enzyme inhibition.34 – 36 There are several pharmacokinetic and
metabolical studies about these molecules as well as their interac-
tion with other drugs. However, there have been few stereochemical
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Figure 1. The basic structure for omeprazole, pantoprazole, and lan-
soprazole molecules.

investigations,36, 37 and no conformational theoretical studies of
them in the literature.

Methodology

Energy surfaces were obtained for each pair of angles, indicated by
arrows in Figure 1. The number of conformations is given by:

Number of conformations = s2 N(N − 1)

2
, (2)

where s is the same as defined in eq. (1).
One can observe that the number of conformations as given

by eq. (1) increases exponentially with the number of bonds that
have free rotation, while from eq. (2), the number of studied con-
formations increases quadratically with N . As the number of free
rotating angles increases, the difference in the number of confor-
mations between these two equations becomes more evident. After
first calculating the energy surface for each pair of angles, the prin-
cipal component analysis (PCA) technique was used to find the
lowest energy conformations for each molecule, in accordance with
eq. (2).

Principal Component Analysis is a mathematical technique used
to reduce the dimensions needed to portray accurately the charac-
teristics of data matrices.38, 39 By means of this method the original
matrix is represented by a set of new variables, called principal
components. Each PC is constructed as a linear combination of
variables:

pi =
ν∑

j=1

ci,j xj , (3)

where pi is the ith principal component and ci,j is the coefficient
of the variable xi,j .5 There are ν such variables. The first principal
component PC1 is chosen in such a way that the new axis pl has
the direction that maximizes the variance of the data along the axis.
The second and subsequent ones are chosen to be orthogonal to
each other and account for the maximum variance in the data not
yet described by previous principal components.

A variety of algorithms can be used to calculate the principal
components. The most commonly employed approach is the singu-

lar value decomposition SVD.40 A matrix of arbitrary size can be
decomposed into the product of three matrices in such a way that:

X = USVt , (4)

where U and V are square orthogonal matrices. The matrix U
(whose columns are the eigenvectors of XXt ) contains the coordi-
nates of samples along the PC axes. The V matrix (which contains
the eigenvectors of the correlation matrix XtX) contains the infor-
mation about how the original variables were used to make the new
axis [ci,j coefficients in eq. (3)]. The S matrix is a diagonal ma-
trix that contains the eigenvalues of the correlation matrix (standard
deviations) or singular values of each of the new PCs. The diago-
nalization of symmetric matrices (such as XXt and Xt X) and SVD
are fundamental problems in linear algebra,40 for which computa-
tionally efficient software has been developed and can be used on a
routine basis41 for very large-size matrices.

Procedure Details

All the initial structures were constructed using the Spartan soft-
ware.42 The PM343 semiempirical method from the Gaussian 98
program44 was used to carry out the calculations. After being con-
structed, the molecules were preoptimized, and the rotation barriers
were calculated.

In this study, molecules shown in Figure 1 have at least three
bonds with free rotation. To introduce and validate the proposed
methodology, the basic structure (corresponding to the common
structure for the compounds, with the exception of the substituents,
Fig. 1) was studied initially. Two distinct approaches were used to
perform conformational systematic analysis and compared to each
other. One uses the new methodology, and the other performs an
extensive conformational search.

In the first one, rotations were performed in pairs of angles
[(1,2), (1,3), and (2,3) in Fig. 1], and the number of conforma-
tions (points) follows eq. (2). The matrix to be analyzed consists of
energy values from potential surfaces for angle combinations, and
they are grouped according to Scheme 1. The idea is to perform a
cyclical permutation on the data, and this matrix form ensures that
no information about the total PES is lost. The energy values ob-
tained for each angle rotation as a function of the two others, allow
the conformational space to be completely mapped. An example
of such matrix, with the discrete values for each rotation angle is
presented by Scheme 2 (the complete matrix can be found in the
Supplementary Material, item A).

In the second approach the analysis was performed through an
extensive search, in which the number of conformations (points)
follows eq. (1).


 [E](1, 2) [E](1, 3)

[E](2, 3) [E](2, 1)

[E](3, 1) [E](3, 2)




SCHEME 1. Schematic representation of cyclical permutation on
energy data matrix. The numbers correspond to the dihedral angles ac-
cording to Figure 1. [E](i, j)s are symmetric matrices.
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Angle 2 3

Rotation 0 30 . . . 330 0 30 . . . 330

0
30
.
.
.

330

1 Energy values Energy values

3 1

0 30 . . . 330 0 30 . . . 330

0
30
.
.
.

330

2 Energy values Energy values

1 2

0 30 . . . 330 0 30 . . . 330

0
30
.
.
.

330

3 Energy values Energy values

SCHEME 2. Matrix example with the discrete values for each rota-
tion angle.

PCA was performed on the data matrix, according to the first
approach. The regions with minimum energy points on the grid
search could be easily selected. The regions containing these se-
lected points were subsequently refined, and PCA was performed
again on these refined data. Further details of this methodology will
be discussed in the next section.

By comparing both approaches, it may be observed that, in the
second case, the number of points is larger than in the first one.
However, the results will show that the selected regions are exactly
the same.

All data matrices were constructed within MATLAB.41 Princi-
pal component analysis was implemented by PIROUETTE.45

Results and Discussion

Basic Structure

Principal Component Analysis: The First Rotation

Three potential energy surfaces are generated for each angle stud-
ied. The results obtained are the energy values for the first dihedral
pair rotations, with a 30◦ increment. The data matrix set up accord-
ing to Scheme 1 contains all these energy surface values. Figure 2
shows these surfaces for the basic structure, where the angle co-
ordinates indicate the energy involved in each angle rotation as a
function of the two others.

The energy data matrix had their maximum pike values cutoff
for a better visualization of the surfaces. For this basic structure,
the cutoff value of 0.12 hartrees was chosen. The resulting surfaces
and the respective contour plots are shown in Figure 3.

From Figures 2 and 3, it can be seen that the potential surface
for angle 2 presents a major number of points with high energy, and
it is the roughest one. The potential surface for angle 1 is not so
rough, and there are more energy points with lower values. Finally,

for angle 3, the potential surface has only a few points with high
energy. However, some energy points also have high values.

The data matrix was autoscaled prior to principal component
analysis (variables have a mean of zero and a variance of one).
Initially, the analysis was performed for the matrix containing non-
leveled data, and the result may be observed in Figure 4a. In this
case, 64% of the original information is accumulated in the first
and second principal components (or Factors). It is easy to note
that the three curves converge to a unique region. Figure 4b shows
the results corresponding to the matrix containing leveled data. In
this case, the original information accumulated in both, first and
second principal components, increases to 73%.

The first principal component (or Factor 1) is related to the en-
ergy gradient (Fig. 4b). An increase of energy is observed from left
to right. The second principal component (or Factor 2) is related to
the surface behavior, i.e., to the surface rugosity. Smoother surfaces
show more positive score values in the second principal component.

These results can be readily understood through Figure 4b. One
can observe that points related to the rotation of angle 2 are located
on the right for the first principal component, while for angles 1
and 3 they are more to the left, indicating, in general, their lower
energies. In the second principal component, angle 2 surface, hav-
ing the highest rugosity, is separated from the others and located on
the lower side of the diagram. The surface related to angle 1 is in
the middle of the diagram, and finally we have the angle 3 surface,
which is least rough, and so it is in the upper side of PCA diagram.
The general behavior of each surface is easily understood from the
contour diagrams shown in Figure 3.

A careful analysis of PCA scores in Figure 4 allows us to iden-
tify and select the regions of minimum energy. This was done using
the following procedure:

1. For each angle, (α), the point (Pα) located at the extreme left
side on the first principal component was selected, i.e., the
lowest value point in this component.

2. Next, the closest points to Pα (with respect to PC1 axis)
were taken into consideration. (a) When the selected points
are adjacent to Pα (±30◦), then only this interval is taken
for further refinement. (b) The points not chosen by (a) but
also present in the left extreme, should also be taken into
consideration. In this case, two intervals should be defined
and submitted to further refinement.

3. To define the same matrix dimension in all cases, a 60◦ range
was chosen for each separated region.

4. To ensure the capture of the minimum, an additional 10◦ was
taken into account in the extremes of the 60◦ interval.

The chosen intervals for the basic structure are in Table 1. The
first column shows how many regions were selected for each angle
according to the PCA results in Figure 4. Two regions were chosen
for angle 1 (a and b), while only one was selected for angles 2
and 3. The second column has the corresponding rotation range
found from the initial value for each dihedral (see Fig. 4). The third
column presents the initial values, and the fourth one has the values
obtained from the sum performed on initial values according to the
respective rotation selected in column 1.
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Figure 2. Potential energy surfaces for each angle in the basic structure.

Principal Component Analysis: Refinement

After the definition of the regions containing minimum energy
structures, the refinement was performed on their corresponding
energy surfaces according to Scheme 1 but using now an increment
of 5◦.

However, special attention must be paid to the new matrix di-
mension for the analysis in the refinement step by PCA. Because
different regions were chosen for each angle, PCA must also be
performed separately for each one (it can be analyzed in only one
step when the dimension of data energy matrix is the same for each
angle). That can be better explained by observing Scheme 3 where
two minimum regions were selected for angle 1 (a and b) and only
one for angles 2 and 3.

PCA score plots for the basic structure refinement are shown in
Figure 5. It is interesting to note that all the plots obtained from

PCA have a parabolic shape, as expected. With the decrease in the
dihedral angle range, the first and second principal components de-
scribe the potential energy curves very clearly and efficiently. These
curves converge to a minimum, which corresponds exactly to the
minimum energy values. Table 2 shows the values corresponding
to the rotations representing the minimum on each parabola, the
60◦ intervals obtained from the first rotation angle, and the final
minimum energy dihedral angle. By combining these angles, two
geometries were obtained, which correspond to the electronic struc-
tures of minimum energy. These geometries were submitted to final
optimization by a semiempirical PM3 method leading to two final
conformations.

The energy values for each minimum obtained are set out
in Table 3, which also contains the dihedral angle obtained for
each conformation. A single-point ab initio calculation was per-
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Figure 3. Potential energy surfaces for each angle in the basic structure, with energy values cutoff at
0.12 hartrees.
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Figure 4. PCA results for the basic structure: (a) results for all poten-
tial energy surfaces data organized according to Scheme 1; (b) results
for all potential energy surface values cutoff at 0.12 hartrees and orga-
nized according to Scheme 1.

formed at Hartree–Fock level using a 6-31G∗∗ basis set46 on
the PM3 optimized structures. The energy values are practi-
cally the same for both conformations. The optimized confor-
mations for each electronic minimum found are presented in
Figure 6.

A complete systematic search was also carried out for the basic
structure, and the results are in perfect agreement with those ob-
tained by our proposed methodology. Although not presented here,
these results are available as Supplementary Material (item B).

Table 1. Regions Obtained by PCA for Each Angle (Basic Structure).

Angle Corresponding Rotation Initial Value PCA Selected Region

1(a) 0–60◦ 48.48◦ 48.48–108.48◦
1(b) 180–240◦ 48.48◦ 228.48–288.48◦
2 0–60◦ 209.79◦ 209.79–269.79◦
3 330–30◦ 289.09◦ 259.09–319.09◦

The same procedure was then applied to obtain global minimum
energy for omeprazole, pantoprazole, and lansoprazole molecules.
The results are summarized as follow.

Omeprazole

Principal Component Analysis: The First Rotation

According to the same procedure described above to select regions
containing minimum energy structures, two regions for angles 1
and 3, and only one for angle 2 were found. Table 4 contains the
related numerical results for omeprazole dihedral rotation angles
with a 30◦ increment.

Principal Component Analysis: Refinement

After defining regions of minimum energy, the refinement was car-
ried out, now with the smaller increment of 5◦. Numerical data are
presented in Table 5 for each angle.

By combining the dihedral angles, four minimum energy struc-
tures could be obtained when the final geometry optimization was
performed. The corresponding angles and energy values are pre-
sented in Table 6, and the corresponding optimized geometries are
shown in Figure 7.

It may be observed that the conformations obtained have very
similar energy values. Another observation can be made compar-
ing the dihedral angle values obtained after optimization (Table 6)
with those from the combination of PCA values (Table 5). In every
conformation, it can be seen that the angle 2 value presents a great
variation from its predefined value in Table 5. This occurs because
this angle is spatially located between the two others (Fig. 1), and
its final value depends on how the angles 1 and 3 change after the
optimization.

Table 7 shows the angle values for the X-ray strucure.47 This
structure was chosen for comparison with the optimized geometries
because the R factor is 0.057 and the goodness of fit is 0.70. The
estimated standard deviations for bond lengths and bond angles are

[ [E](1(a), 2) [E](1(a), 3)

[E](1(b), 2) [E](1(b), 3)

]

(a)[ [E](2, 1(a)) [E](2, 1(b)) [E](2, 3)

[E](3, 1(a)) [E](3, 1(b)) [E](3, 2)

]

(b)

SCHEME 3. Schematic representation of cyclical permutation in en-
ergy data refinement: (a) Matrix representation for angle 1 data, where
two different regions were selected on the grid search; (b) Matrix rep-
resentation for angles 2 and 3 data, where a single region was selected
on the grid search for each one.
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Figure 5. PCA results for selected regions in the basic structure refinement. The data are organized
according to Scheme 3.

Table 2. Regions Obtained by PCA for Refinement (Basic Structure).

Corresponding PCA Obtained
Angle Rotation Initial Region Value

1(a) 45◦ 48.48–108.48◦ 93.48◦
1(b) 45◦ 228.48–288.48◦ 273.48◦
2 45◦ 209.79–269.79◦ 254.79◦
3 35◦ 259.09–319.09◦ 294.09◦

Table 3. Characteristics of Minimum Conformations (Basic Structure).

Obtained �Hf(PM3) Ee(6-31G∗∗)

Conformation Angle Value (kcal mol−1) (hartrees)

A 1 92.29 54.96 −1134.33
2 107.10
3 298.32

B 1 266.45 54.71 −1134.35
2 175.70
3 296.45
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Figure 6. Optimized conformations for the basic structure.

0.004–0.010 Å and 0.02–0.04◦ , respectively. By simple observa-
tions of the angles from Tables 6 and 7 it cannot be seen how close
the found and X-ray conformations are.

For better visualization, the X-ray structure was individually
compared to the other conformations, and the results are presented
in Figure 8. These compounds have an optical center located on
the sulfur of the sulfoxide group. Figure 8b shows that conforma-
tion B is practically the mirror image of X-ray structure, i.e., one
can say that this conformation is the X-ray structure enantiomer.
On the other hand, conformation C (Fig. 8c) is practically super-
imposed on the to X-ray structure, and can be considered as being
the same. Consequently, it is expected that conformation B will be
the enantiomer of conformation C. These two conformations are
compared in Figure 8e, confirming our expectations. In conclusion,
it may be considered that these structures are the same, because
the enantiomer properties are exactly the same. Thus, three minima
conformations for omeprazole have been obtained.

Pantoprazole

Principal Component Analysis: The First Rotation

For the pantoprazole molecule, two regions for angles 1 and 3 were
selected, while only one was chosen for angle 2 when the dihedral
increment was 30◦. Table 8 shows the PCA results.

Table 4. Regions Obtained by PCA for Each Angle (Omeprazole).

Corresponding
Angle Rotation Initial Value PCA Selected Region

1(a) 180–240◦ 68.94◦ 248.94–308.94◦
1(b) 300–0◦ 68.94◦ 8.94–68.94◦
2 60–20◦ 37.22◦ 97.22–157.22◦
3(a) 300–0◦ 27.98◦ 213.98–273.98◦
3(b) 120–180◦ 27.98◦ 33.98–93.98◦

Principal Component Analysis: Refinement

In this step, the regions selected above were refined with a dihedral
angle increment of 5◦. The results are summarized in Table 9. By
combining the dihedral angle (Table 9), four minimum energy con-
formations were obtained. The related angles and respective energy
values obtained after PM3 geometry optimization and ab initio cal-
culation are presented in Table 10.

By examining the obtained data, some interesting conclusions
can be drawn. Conformations C and D can be considered to be
practically the same structure, because the dihedral angles obtained
after optimization are very close to each other. The correspond-
ing geometries are presented in Figure 9. Another interesting
observation can be made from Figure 10, where both C (or D)
and B conformations are compared. As in the case of omepra-
zole, these molecules form an enantiomer pair. Considering that
conformations C and D are equal, and both are enantiomers of
conformation B, it can be concluded that these three conforma-
tions correspond to a unique structure, assuming that enantiomers
have the same physico-chemical properties. In this case, two con-
formations of minimum energy were obtained for pantoprazole.
Unfortunately, there is no X-ray structure available in this case, and
no comparisons can be made.

Table 5. Regions Obtained by PCA for Refinement (Omeprazole).

Corresponding
Angle Rotation Initial Region PCA Obtained Value

1(a) 45◦ 248.94–308.94◦ 293.94◦
1(b) 5◦ 8.94–68.94◦ 13.94◦
2 40◦ 97.22–157.22◦ 137.22◦
3(a) 35◦ 218.98–278.98◦ 248.98◦
3(b) 25◦ 33.98–93.98◦ 58.98◦
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Table 6. Characteristics of Minima Conformations (Omeprazole).

Obtained �Hf(PM3) Ee(6-31G∗∗)

Conformation Angle Value (kcal mol−1) (hartrees)

A 1 12.88◦ −33.49 −1440.18
2 151.48◦
3 297.75◦

B 1 79.19◦ −35.94 −1440.18
2 181.75◦
3 62.02◦

C 1 281.84◦ −36.19 −1440.19
2 171.89◦
3 298.19◦

D 1 284.59◦ −36.39 −1440.18
2 81.88◦
3 74.70◦

Table 7. X-ray Structure Characteristics.

Conformation Angle Angle Value

X-ray 1 326.34◦
2 179.08◦
3 238.68◦

Lansoprazole

Principal Component Analysis: The First Rotation

While for the previous studies three dihedral angles were simul-
taneously studied, now four dihedral angles must be taken into
account, because lansoprazole is far more complex. One more sub-
stituent (R2 in Fig. 1) must be rotated in this molecule, due to the
fact that it also causes steric effects. Thus, now there are four angles
to be varied in pairs. Two regions for angles 1 and 3 were obtained.
For angle 2 only one region was obtained while for angle 4 a broad

Figure 7. Optimized conformations for the omeprazole molecule.
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Figure 8. Omeprazole-optimized conformations and X-ray structure
comparison: (a) superimposed conformation A and X-ray structure;
(b) superimposed conformation B and X-ray structure; (c) superim-
posed conformation C and X-ray structure; (d) superimposed con-
formation D and X-ray structure; (e) superimposed conformations B
and C.

region between 330◦ and 60◦ was selected in the first rotation. The
results obtained for lansoprazole are summarized in Table 11.

One can observe that, for angle 4 relative to lansoprazole mole-
cule, the separated region is larger than that 60◦ range defined
earlier. To solve the problem, a central value was chosen that ranged
from 345◦ to 45◦. To perform the calculations, as mentioned above,
an additional 10◦ over the extremes was taken account. Thus, the
total variation can be considered as 335◦ and 55◦, covering practi-
cally the entire interval for this angle.

Table 8. Regions Obtained by PCA for Each Angle (Pantoprazole).

Corresponding
Angle Rotation Initial Value PCA Selected Region

1(a) 300–0◦ 84.93◦ 24.93–84.93◦
1 (b) 150–210◦ 84.93◦ 234.93–294.93◦
2 60–120◦ 52.48◦ 112.48–172.48◦
3(a) 330–30◦ 266.84◦ 236.84–296.84◦
3(b) 90–150◦ 266.84◦ 356.84–56.84◦

Table 9. Regions Obtained by PCA for Refinement (Pantoprazole).

Corresponding
Angle Rotation Initial Region PCA Obtained Value

1(a) 30◦ 24.93–84.93◦ 54.93◦
1(b) 15◦ 234.93–294.93◦ 249.93◦
2 35◦ 112.48–172.48◦ 147.48◦
3(a) 25◦ 236.84–296.84◦ 261.84◦
3(b) 60◦ 356.84–56.84◦ 46.84◦

Principal Component Analysis: Refinement

Table 12 shows the numerical results obtained for lansoprazole
refinement study, and four minimum energy conformations were
found. The corresponding optimized structures for each of them
are in Figure 11.

Angles and energy results are presented in Table 13. There is
no X-ray structure reported for this molecule. However, as in the
cases of omeprazole and pantoprazole, conformations B and C
are optical isomers, as can be seen from the comparison made in
Figure 12.

General Considerations

A few general conclusions can be drawn by observing the overall
results. Despite the fact that positive values for heat of formation
were obtained for the basic structure energy when using the semi-
empirical PM3 method, this does not mean that the conformations
are not in a state of minimum energy, but shows that the basic struc-
ture is not stable without the substituents (experimentally, this basic
structure has not been reported). This structure was only used to
introduce the proposed methodology.

When comparing the conformations obtained for each mole-
cule, it can be seen that all B and C conformations for the sub-
stituted compounds (omeprazole, pantoprazole, and lansoprazole)

Table 10. Characteristics of Minimum Conformations (Pantoprazole).

Obtained �Hf(PM3) Ee(6-31G∗∗)

Conformation Angle Value (kcal mol−1) (hartrees)

A 1 49.37◦ −157.67 −1673.69
2 119.22◦
3 295.36◦

B 1 68.93◦ −158.57 −1673.70
2 177.83◦
3 62.82◦

C 1 291.09◦ −158.57 −1673.70
2 182.18◦
3 297.05◦

D 1 290.96◦ −158.74 −1673.70
2 182.23◦
3 297.22◦
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Figure 9. Optimized conformations for the pantoprazole molecule.

Figure 10. Pantoprazole-optimized conformations comparison: super-
imposed conformations B and C.

are very similar to those found for the basic structure. Moreover,
for omeprazole, pantoprazole, and lansoprazole, the B and C con-
formations are optical isomers.

With respect to the energy values obtained for all conformations
in the substituted compounds, the trend observed in the PM3 semi-

Table 11. Regions Obtained by PCA for Each Angle (Lansoprazole).

Corresponding
Angle Rotation Initial Value PCA Separated Region

1(a) 180–240◦ 65.02◦ 245.02–305.02◦
1(b) 300–0◦ 65.02◦ 5.02–65.02◦
2 60–120◦ 53.29◦ 113.29–173.29◦
3(a) 330–30◦ 251.64◦ 221.641–281.64◦
3(b) 120–180◦ 251.64◦ 11.64–71.64◦
4 330–60◦ 67.35◦ 52.35–112.35◦
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Table 12. Regions Obtained by PCA for Refinement (Lansoprazole).

Corresponding
Angle Rotation Initial Region PCA Obtained Value

1(a) 15◦ 245.02–305.02◦ 260.02◦
1(b) 45◦ 5.02–65.02◦ 50.02◦
2 45◦ 113.29–173.29◦ 158.29◦
3(a) 25◦ 221.64–281.64◦ 246.64◦
3(b) 40◦ 11.64–71.64◦ 51.64◦
4 20◦ 52.35–112.35◦ 72.35◦

empirical method is the same as for the 6-31G∗∗ ab initio method.
The basic structure has the highest energy, followed by omeprazole,
lansoprazole, and finally pantoprazole. Based on these facts, it can
be concluded that the substituents are responsible not only for sta-

bilization of the basic structure, but also for the energetic difference
between the studied compounds.

Conclusions

A new methodology of conformational analysis that controls the
combinatorial explosion is proposed. Principal component analysis
associated to quantum mechanic calculations is used to describe
minimum structures energy. The methodology can be useful to
handle small- and medium-size molecules. The maximum size
which the method can efficiently handle is being investigated.
Due to the PCA dimension reduction, the method’s efficiency is
highly increased, allowing it to be of practical use in the study of
more complex molecules. The method introduced was exemplified
through the analysis of substituted benzimidazoles.

Figure 11. Optimized conformations for the lansoprazole molecule.
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Table 13. Characteristics of Minimum Conformations (Lansoprazole).

Obtained �Hf(PM3) Ee(6-31G∗∗)

Conformation Angle Value (kcal mol−1) (hartrees)

A 1 65.39◦ −145.87 −1622.87
2 80.29◦
3 293.29◦
4 89.38◦

B 1 81.32◦ −146.10 −1622.88
2 179.82◦
3 61.12◦
4 97.37◦

C 1 277.72◦ −144.72 −1622.88
2 170.00◦
3 298.69◦
4 96.00◦

D 1 276.50◦ −144.01 −1622.88
2 225.40◦
3 63.55◦
4 96.14◦

An important remark must be made when the number of mini-
mum conformations found for basic structure is compared to those
found for the substituted compounds. If the calculations were ini-
tially performed only for the basic structure and the substituents
were subsequently added and followed by geometry optimization,
all the compounds would only show two minimum energy confor-
mations. A larger number of conformations could be found only
when the analysis was performed in the substituted molecule from
the beginning of the whole procedure. Thus, the addition of each
substituent prior to the complete conformational analysis calcula-
tions is extremely important in such investigations.

The same methodology proposed here has been applied to a
neolignanic derivative where four angles were taken into account
and the results are in perfect agreement with those obtained from
the complete systematic search. Applications of this method to a

Figure 12. Lansoprazole-optimized conformation comparison: super-
imposed conformations B and C.

variety of larger molecules, including ring conformational search,
are currently being carried out.
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