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In recent textbooks and educational literature, a strong
empbhasis is given to the use of computers as tool for teaching
undergraduate courses (/-5). However, to turn a computer
into a useful ool for scientific computation, the appropriate
mathematical models and tools and their applications must
be introduced (2, 6-8).

In the past few years, theoretical and practical interest in
oscillatory reactions has increased enormously. Unlike common
reactions with no peculiar temporal behavior, these reactions
contain reagents, intermediates, or products whose concentra-
tions can rise and fall spontaneously in a cyclic or disorganized
fashion. This article reports the use of Mathematica software (9)
for a theoretical study of some kinetic mechanisms exhibiting
oscillating and chaotic behaviors. The use of a high-level'
computational environment is extremely convenient in this
context owing to the availability of efficient built-in routines
that can be used to analyze and numerically solve the differen-
tial equations describing the chemical reactions. Also, the visual
and graphical capabilities of these computational environments
allow the use of many powerful geometrical tools from modern
nonlinear dynamics (2), which can make the treatment quali-
tatively richer and much more appealing to students.

The Lotka Reaction

In 1925, Alfred Lotka designed a very simple pedagogic
example of a reaction exhibiting a temporal behavior charac-
terized by damped oscillations. The reaction converges in an
oscillatory manner to a stationary stable state. Lotka’s kinetic
mechanism and rate equations for this three-step reaction are:

sepl ASX dIX1/ds = A,[A] - & IX][Y]

step 2 X+Yk—z)2Y d[Y]/dr = &, [XI[Y] - &5[Y] (1)

k

step3 Y P d[P]/dr = A;[Y]

where the reagent A is maintained at a fixed concentration
equal to 1.0. In order to keep {A] constant in the reaction
process, a flow of reagent A at rate 4,[A] must be provided
into the system (i. e., the reaction system is open). Step 2 is
autocatalytic; X is being formed in step 1 and consumed in
the following step. The concentration of Y increases steadily,
since it is produced in double. That in turn causes a decrease
in the concentration of X, and the velocity of reaction in step
2 and the concentration of Y develop toward the equilibrium
since Y is being consumed in step 3. To simplify the math-
ematical notation, lowercase letters 4, x, y, p will be used to
represent the concentrations of the chemical substances de-
noted by uppercase letters A, X, Y and P instead of the usual
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chemical notation [A], [X], [Y], and [P]. Observe that the
first two kinetic equations are not uncoupled to the third and
can be treated separately.

The first step in analyzing the reaction will be to deter-
mine the stationary states specified by the condition that all
the rates of change should vanish simultaneously,

dx/dt = kja—kyxy =0
dy/de = kyxy— k3y =0

which gives only one solution: (x;,y,) = (£3/k,, ak,/k3).

A very illuminating approach to the reaction kinetic
mechanism can be obtained by interpreting the pair of con-
centrations (x,y) as a state of the reaction and geometrically
representing it by a point in the Cartesian plane. The evolution
of the reaction with time can then be visualized as a trajectory
of a point R(#) = (x(#),5(2)) in what is called a phase plane in
dynamical system theory (2, 6). The dynamics of this point
at each time is described by its vector velocity

dr

dR [dx dy

ds’ de
On the other hand, the kinetic rate equations (1) constrain
the velocity vector of the point R as a function of its coordi-
nates; that is,

dR (dx dy
O (dt’z) = (kla - /ezxy,kzxy—kiy)

The main advantage of this representation is that one can
then interpret the right-hand term of the equation as a vecror
field in the plane independently of the solutions of the
differential equations. That s, to each point (x,y) in the plane,
an arrow vector V(x,y) = (ki@ — kyxy, kaxy — kyy) is attached,
giving the velocity of a trajectory when, if ever, it passes
through that point. The modern theory of ordinary differ-
ential equations is largely based on that geometrical inter-
pretation (2, 6).

The points (x,y) where V(x,y) = 0 are called szationary
states. They give the states where the reaction can theoretically
be maintained at constant equilibrium. The interest here is
restricted to the first quadrant of the plane (x> 0, y 2 0),
although mathematically the whole plane can be explored.
The length of the arrow at a point gives the rate change of
the system at that corresponding state, the first component
referring to the reaction rate of X and the second to the
reaction rate of Y.

With this point of view, one can build a global qualitative
picture of all possible trajectories without solving the differen-
tial equations, by simply drawing a number of sample arrows
in the plane. Figure 1 shows some examples for V(x,y} such as
V(0,y), V(x,0), and V(1,1). Note that in the Lotka reaction,

the component parallel to the x axis always has a constant
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value (#,4). Starting with an initial point R, = (x,,5,) at instant
t = 0, the resulting trajectory, “powered” by the established
vector field V(x,y), is simply the geometrical interpretation of a
chemical reaction that begins with concentrations x, and y,.
Figure 2 (top) shows the vector field representation for the Lotka
reaction mechanism characterized by £, = 0.3, &, = 0.6, and
ks = 0.8 and [A] = # = 1.0. From this it is easily guessed that,
regardless of the initial concentrations of X and Y, the trajec-
tories end up at (x;,y,). This plot can be very quickly done
in Mathematica with a single command

<<Graphics'PlotField’
PlotVectorField[{k1 a-k2 xy, k2 x y-k3 y},{x, xmin, xmax},{y, ymin, ymax}]

However, the geometrical picture gives only a qualitative
description of the Lotka reaction determined by a set of param-
eters (£, k5, k3, a). To describe one (or any) experiment, the
initial conditions, x, = x(0) and y, = (0), must be given. After
the initial condition is set, the differential equations have to be
numerically solved to obtain an exact description of this par-
ticular trajectory. The numerical integration of the differential
equations (1) can be obtained by using built-in routines of
Mathematica through the command “NDSolve”:

sol=NDSolve[{x'[t]==k1 a - k2 x[f] y[t],
y'[l==k2x[1] y[t] - k3y[t],
p’'[fl==k3 y[t]
x[0}==0.2,p[0]==0.0,y[0]==.1},
{x,y.p}.{t,0, totaltime}, MaxSteps->Infinity]

where “totaltime” is a given time interval of interest. Another
way to represent the evolution of this particular reaction is
to plot the concentrations x(z) and y(#) with respect to time.
These are given by the numerical solution of the reaction rate
equations. This can be easily done using a “Plot” command.
A particular experiment starting with initial concentrations
x(0) = 0.2, (0) = 0.1, and p(0) = 0.0 can be followed in Figure
2 (middle) through the graphs of x(#) = [X](#) and ¥(#) = [Y](2).

Plot[Evaluate[{x{t],y[t]}/.sol],{t,0 totaltime},PlotRange-> All]

The plane trajectory which geometrically represents the
evolution of the reaction in the phase plane, (x(2), ¥(#), can
be obtained with the ParametricPlot command (see Figure
2, bottom).

ParametricPlot{Evaluate[{x][t],b[t]}/.sol], {0, totaltime}, PlotRange->All]

The ideas and techniques introduced in this section are
straightforward and easily followed by students. The diagrams
generated capture the students’ geometrical intuition and
illustrate well the techniques in a modern way. Computational
experiments with different sets of parameters (rate constants)
and different initial concentrations can be easily done and
will help students acquire familiarity with the basic concepts
of nonlinear dynamics in a concrete and simple setting.

The Lotka-Volterra Reaction

Another example of oscillatory reaction with a very
simple mechanism is the Lotka—Volterra reaction. About the
time of Lotka’s work (1925), an Italian mathemarician, V.
Volterra, independently proposed (1926) a model for popu-
lation dynamics of interacting organisms (predator—prey),
which can also be interpreted as a reaction mechanism whose
solutions are steady oscillations without damping. The kinetic
mechanism and rate equations are also represented in three
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Figure 1. Some samples of the vector field in the phase plane.
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Figure 2. The Lotka reaction (see text for set of rate constants be-
ing used). Top: The Lotka vector field sketch in the phase plane.
Middle: Damped oscillations of intermediates X and Y as a func-
tion of time. Bottom: A trajectory of {x{f), y(f)} in the phase plane
starting with (xg = 0.2, yo = 0.1).
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steps, the most important difference between this and the
former reaction being that in the present case there are two
autocatalytic steps (step 1 and step 2) instead of only one.

stepl A+X 52X d[X)de= b [A]X] - bIXIIY]
step2 X+Yo52Y  dYlds= bXIY] - AY] ()

ky
step3 Y—>P d[P)/dr = &5[Y]

[A] = a is set constant and equal to 1.0 as in the previous
example. Observe that, when [Y] = 0, then dx/d# = 4,2 and
x() = x(0)eh*, and so the concentration of X increases ex-
ponentially at the beginning. But then, from step 2, the con-
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Figure 3. The Lotka-Volterra reaction (see text for the set of rate
constants being used}. Top: The Lotka-Volterra vector field sketch
and one of its orbit in the phase plane. Middle: Periodic oscilla-
tions of intermediates X and Y as a function of time. Bottom: Power
spectrum, showing the characteristic frequency of one oscillation.
The initial concentrations are xo = 2.0 and yg = 0.1.
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centration of Y also increases exponentially, consuming the
intermediate X and producing more Y than is consumed. As
[Y] increases, the product P starts being formed (step 3). So
with the decreasing of [X], step 2 slows down and [Y] also
falls. This causes [X] to start increasing again in step 1, and
the cycle starts again. Of course this verbal description only
suggests but does not prove that the process will be periodic,
since it might restart in a different state. The vector field rep-
resentation indicates even more clearly the presence of closed
circuits (cycles), although it still does not prove it.

The numerical integration of eq 2 will again be obtained
through the command NDSolve, using the rate constants £, =

0-3, kz = 0.6, and ka = 0.4.

sol=NDSolve[{x[t]==k1 x[t] a - k2 x[f] y[#],
yT==k2 x{i y11 - k3 ylil,
p'[if==k3 y[tl},
{x,y.p}{1.0,totaltime}, MaxSteps->6000]

In Figure 3 (top) are shown both the vector field and two
orbirs (closed trajectories) obtained by numerical solution of
the differential equarions, starting with initial concentrations
x(0) = 0.8, ¥(0) = 0.8, and p(0) = 0.0, and then a second orbit
beginning with x(0) = 0.8, »(0) = 1.0, and p(0) = 0.0. Figure 3
(middle) shows the temporal evolution of the intermediates
X and Y, starting with the initial concentrations x(0) = 2.0,
(0) = 0.1, and p(0) = 0.0.

Oscillatory behavior can also be conveniently analyzed
from a different point of view by applying a Fourier decom-
position to the numerical solution of the rate equations (10~
11). The main idea behind the Fourier analysis is the decom-
position of a function with respect to standard oscillations,
the so-called normal modes, given by trigonometric functions:
in complex notation, e*™ = cos 2nnt + i sin 2nnt, where 7
is any integer.

Now, if a function of time f(#) is Fourier decomposed as

f(t) - g aneliﬂnt

then each 4, can be thought of as the contribution of fre-
quency # to the construction of £(#). The function of », a(n) =
a,, is called the Fourier transform of the function £(#). It shows
which oscillations are the most important for the behavior
of (#), something very difficult to visualize directly from the
temporal graph of £(2).

The Fourier decomposition of the above kinetics in nor-
mal modes of oscillation is characterized by the relative weight
la,|* with respect to the frequency #, also called the power
spectrum of f(#). This feature can be easily visualized through
the ListPlot command:

a=Transpose[Table{Evaluate[x[t]/.sol],{t,0,totaltime}]];
freqdata=Abs[Fourier[a[[1]]]];
ListPlot[freqdata,Plotloined->True]

Note that Fourier analysis is an approach complementary
to the qualitative phase plane representation, since it gives tem-
poral quantitative information that is absent from the latter.

The power spectrum for x(#) obtained from the third
numerical experiment above is shown in Figure 3 (bottom)
for totaltime = 1000 and » ranging from zero to 300. The
characteristic frequency of oscillation ® = 2nn/totaltime is
0.28 s7!. Note that besides this main amplitude contribution
to the expansion, there are other prominent contributions,
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equally spaced, which is characteristic of a very definite peri-
odic behavior (11). A nice exercise would be to explore how this
frequency varies with respect to the initial concentration of X.

A very annoying and unrealistic aspect of this reaction
model is that any small perturbation (which always exists,
all the time) to a mathematical cycle will change its “orbit”.
Therefore no definite periodic solution will be chosen by the
system, and consequently, no definite period of oscillation is
experimentally obtainable.

A more realistic reaction mechanism, which provides a
very definite periodic oscillation, is exemplified by equations
with [imit cycles, called stable or attractor orbits. In those cases,
any small deviation from the cycle regime is self-corrected
by an internal damping mechanism. The most famous ex-
ample of a limit cycle is provided by the following model
equations describing an electrical oscillator characterized by
the vector field V(x,y) = (3, -x + y(1 —x? - 3?)). As can be seen
from its phase plane representation (Fig. 4), there is a very
definite limit cycle and any deviation from it is promptly self-
corrected by the system (2). Thus its dynamical behavior is
very much like that of a clock pendulum. As in the spectral
theory of quantum mechanics, for those reaction models, a
very definite number (i.e., the period of oscillation for the
limit cycle) is determined. Since any initial conditions will
produce a trajectory that quickly approaches the same limit
cycle, an oscillatory regime will be experimentally observed
after a short transitory accommodation. One real chemical
reaction that exhibits such periodic oscillation is the famous
(and not so simple) Belousov—Zhabotinsky reaction in which
malonic acid is oxidized by BrO;™ in an acidic medium
(H,SOy) with or without a catalyst (usually Ce™"). In bio-
chemical reactions, those cycles can frequently be related to
the rhythms of life (12).

In the next example, a model for a class of biochemical
reactions that can exhibit limit cycles and also a more complex
behavior called chaos will be analyzed.

Glycolytic Reaction

There has recently been an explosion of research on
complex dynamical behavior phenomena generated by relatively
simple equations (6, 7, 1.2) consisting of limit cycles and
chaotic behavior. A chaotic behavior is not easily defined ex-
cept to say that it is very complicated. A simple way to better
characterize this kind of behavior in a first approximation is
obtained through its Fourier analysis, which shows no definite
prominence of any finite number of periodic oscillations.
However, it must be stressed that chaos is quite different from
noise, since it is deterministic and not stochastic.

This section shows how a relatively simple model of en-
zymatic reactions can be useful for understanding complex
behavior of many important metabolic mechanisms. Among
common biochemical examples exhibiting complex periodic
oscillations and chaos are the glycolytic oscillations in muscle,
yeast glycolysis, and the periodic synthesis of cyclic AMP (13).

A few of the many types of behaviors that can result from
the interaction between two instability mechanisms will be
described using a model for enzymatic reactions proposed by
Decroly and Goldbeter (8, 13—15). It can be viewed as a simple
prototype for the interplay between two instability-generating
mechanisms. In addition to simple periodic oscillations, this
system can give rise to the phenomenon of birhythmicity;
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Figure 4. The vector field sketch in the phase plane showing a
definite periodic cycle and the oscillations given by an electrical
oscillator.

20

Figure 5. The glycolytic reaction for k = 4.422 (see text for other
parameters characterizing the reaction). Top: Projection of a three-
dimensional phase space trajectory associated with the chaotic re-
gime into the plane {g, b). Bottom: Power spectrum of the function
aft), showing the disorganized feature of this chaotic regime starting
with initial concentrations ag = 30.0, by = 188.8, ¢y = 0.3367.

that is, the simultaneous existence of two attracting cycles,
one of them “chosen” by the system depending on the initial
concentrations, and chaos.

The sequence of reactions can be represented as

E— E—

LA P, P, —

where the substrate S is synthesized or injected into the system
at a constant rate denoted by v and its transformation into
P, is catalyzed by an allosteric enzyme E,. The product P,
activates E|. The second enzyme E, uses P, as substrate to
produce P; and is activated by its own product Py; £ is the
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Figure 6. The glycolytic reaction for k = 4.422 (see text for other
parameters characterizing the reaction). Top: Projection of a three-
dimensional phase space trajectory associated with the limit cycle
into the plane {a,b}. Bottom: Power spectrum of the function a(t),
showing the characteristic frequency of oscillation starting with ini-
tial concentrations ag = 32.5, by = 188.8, ¢y = 0.3367.
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Figure 7. The glycolytic reaction showing the projection of two
trajectories approaching different limit cycles for k = 4.0 Top: starting
with initial conditions ag = 33.9, by = 250.0, ¢o = 0.25. Bottom:
starting with inifial conditions ag = 32.0144, by = 250.0, ¢o = 0.25.
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rate constant for removing P,. This model is an extension of
the glycolytic oscillation models proposed by Monod-Wyman—
Changeux (16); it has only one positive feedback and evolves
to a stable stationary state (damped oscillation) or to a mono-
periodic stable regime (a limit cycle). The time evolution of the
metabolite’s concentrations is governed by three ordinary dif-
ferential equations:

da/dr = (VIK,,) — 6,®
dblds = 4,6,® — on 3)
de/de = oo — ke

zz(l +sz)(1 + [7)2

[Ll o((rears +;,)2]}

"

5(1 +d17)(1 +C)L

where (OF

and N=—

[L2+((1 +db)(1 H)z)]

and where, 4, 6, and ¢ denote the normalized (dimensionless)
concentrations of substrate S and the intermediates P, and
P, (ie., a = SIKy,, b = P\/k,, and ¢ = Py/k,,. The constants
0, and o, are the maximum activities of enzymes E; and E,
divided by K, and X,,,, the Michaelis constants for E| and E,,
respectively. L, and L, are allosteric constants; g, = K, /),
and g; = K/ k.

The detailed biochemical reactions that give rise to these
kinetic equations are rather complicated and will not be de-
scribed further here; the reader is referred to the literature
(13-15).

Observe that in this case, the geometrical representation
of the vector field should be displayed in a three-dimensional
space, which has much more room than the plane, and
although it is not quite as helpful it still is an important
conceptual tool. The values of the parameters that will be
used are experimentally (i.e., computationally) obtained in
order to yield the interesting behaviors that are intended.
Because that involves a lot of computational work, the values
suggested in ref 8 are used here. Students and the instructor
may further explore the system behavior by using sets of
parameters close to but different from those given here.

A basic routine for solving the glycolytic reaction shown
in eq 3 is given by

sol=NDSolve[

{&'[t] == nu/km1 -sigmal (aft] {1+alt]} ((1+b[t])*2))/

(L1 +((1+a[m)?2) (1+b][])A2)),

b'[f] == q1 sigmal (a[f] {1+alt]) (1+b[)A2/(L1 +
((T+a[))”2) {(1+b[1))*2)) - sigma2 (b[t] (1+d b[t])
{(1+c[*2))/(L2 + {{1+d b[t]}*2) ({1 +c[t]]*2)),

c'[t] == q2 sigma2 (b[t] (1+d b[t]} {(1+c[1])*2))/(L2 +
({1+d bI)"2) ((1+<c[)*2)} - k c[H],

}{a,b,c}{t,0,totaltime}, MaxSteps->Infinity]

where (nu/km1), sigmal, and sigma2 represent v/K,, , 6;, and
O3, respectively.

If into the above routine are set the values nu/km1 = 1.0,
sigmal = sigma2 = 22.2222, q1 = 50, q2 = 0.02, L1 = 5 x 108,
L2 =100, d = 0.0, totaltime = 1500, k = 4.422 and initial con-
centrations 2(0) = 30.0, 54(0) = 188.8 and (0) = 0.3367, the

JChemEd.chem.wisc.edu ® Vol. 76 No. 6 June 1999 e Jjournal of Chemical Education 865

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



system shows a chaotic behavior. The trajectory described by
the system is actracted by a set of points in a three-dimensional
space (2,6,¢) with an extremely itregular structure, possibly
a fractal, called a strange attractor (2). This can be visualized
by using the command “ParametricPlot” (see Fig. 5, top). For
k in the range between 4.422 and 4.520, the system shows a
chaotic behavior for some initial set of concentrations. Note
that the range of values for which chaos occurs is very small.

It is also observed that in this same range of 4, chaos
coexists with a stable oscillatory regime. Figure 6 (top) shows
an example where the initial set of concentrations 4(0) = 32.5,
b(0) = 188.8, and (0) = 0.3367 evolves to a limit cycle for
the same set of parameters as before.

Some other very interesting features of this set of reactions
can be obtained by setting the parameter £ in the range between
3.52 and 4.04. The system exhibits two limit cycles, which
means that for the same value of £, depending only on the
initial concentration of 4, the system converges to one of the
two periodic regimes after some adaptation time (transient
regime). The trajectories for these two limit cycles can be seen
in Figure 7 for k£ = 4.0. In one case (Fig. 7, top), the initial
concentrations are 2(0) = 33.9, 4(0) = 250.0, and ¢(0) = 0.25;
in the other (Fig. 7, bottom), #(0} is slightly changed to 4(0) =
32.0144, 6(0) and c(0) being kept the same. This bistability
between two oscillatory states (i.e., the existence of two
attracting cycles) is called birhythmicity.

These behaviors can also be analyzed from a Fourier
point of view. The power spectrum of the solution shown in
Figure 6 (bottom) has a high-amplitude component at # = 43,
which shows a well-determined frequency of ® = 0.05 s\
The figure shows the power spectrum for up to » = 300. The
small contributions are superharmonics. On the other hand,
the power spectrum graphic for the chaotic regime shows a
disorganized feature as can be seen in Figure 5 (bottom). The
higher amplitudes in some way resemble the results obtained
for the limit cycle, which is understandable since the chaotic
behavior occurs when the parameters are given values close
to those that previously resulted in a limit cycle behavior.
Observe that for a whole range of frequencies the Fourier
components are far from zero, with no repetitive pattern.

These experiments reflect only a small sample of the
many possible behaviors for this complex and rich system.
Students should explore other sets of parameters or initial
concentrations and get acquainted with the many interesting
aspects of these fascinating phenomena (13-15). These
computational experiments will be conceptually helpful to
students when they meet complex dynamic behavior in the
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future, as they almost cerainly will (2, 6, 13). If they are not
prepared to look for an interpretation of a complex phenom-
enon, it is almost sure that important information will be
discarded without proper appraisal.
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Note

1. “High level” in this computational context means that rou-
tines for common but complicated calculations (like polynomial and
matrix calculus, numerical solution of systems of linear equations or
differential equations, or plotting) are available as simple commands.
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