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Abstract

High resolution proton nuclear magnetic resonance spectroscopy (1H MRS) can be used to detect biochemical changes in 
vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis 
and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares 
discriminant analysis (PLS-DA) was used to classify 11.7 T 1H MRS spectra of brain tissue extracts from patients with brain 
tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control 
brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, 
alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-
validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on 
the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly 
related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways 
such as glycolysis and ketogenesis.
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Brain cancers are estimated to be responsible for 12,920 
deaths in the United States in 2009 (1). The increase in 
the incidence of brain tumors is partly attributable to more 
accurate diagnosis, especially with magnetic resonance 
imaging and, more recently, to the clinical application of in 
vivo proton magnetic resonance spectroscopy (1H MRS). 
They allow early detection of the lesion and noninvasive 
biochemical assay of tissue in selected brain regions.

In vivo 1H MRS performed at low magnetic field strengths 
(usually 1.5 T) is considerably limited due to resonance over-
lap and to line broadening. Better resolved spectra acquired 
in vitro at high resolution 1H MRS are particularly useful 
to determine the chemical composition of tissue extracts. 
This procedure suffers from a degradation of the tissues 

occurring before the extraction process with perchloric acid 
(PCA) (2). Additionally the T2 values of the metabolites in 
vitro, in solution, are quite different from those in the tissue 
and the analyses rely only on water soluble metabolites 
missing information of the lipophilic fraction. Despite these 
shortcomings, the spectral features of brain tissue extract at 
high field strengths are similar to 1H MRS in vivo, indicating 
that most biochemical information is retrieved (3).

The use of supervised pattern recognition methods such 
as partial least squares discriminant analysis (PLS-DA) on 
complex data provides a powerful tool for characterizing 
different classes of brain tumor extracts according to their 
spectral metabolic profiles (4-8). The purpose of the present 
study was to apply PLS-DA to analyze the high-resolution 



150 A.V. Faria et al.

www.bjournal.com.brBraz J Med Biol Res 44(2) 2011

1H MRS spectra of brain tumor extracts in order to refine the 
identification of their metabolic profile and to identify possible 
surrogate markers for different types of brain tumors. 

Material and Methods

This study involves the use of human brain tumor biop-
sies. It was reviewed and approved by the Clinical Hospital 
Ethics Committee of the Universidade Estadual de Campi-
nas, Brazil, where the tissue samples were obtained. The 
1H MRS and data analysis were performed in the Chemistry 
Institute, Universidade Estadual de Campinas, Brazil.

Patient group profile
High field 1H MRS was applied to 43 extracts of brain 

tissue from 39 patients, ranging from 29 to 66 years of age, 
who underwent surgery or open biopsy for the treatment or 
diagnosis of brain tumors and from 4 patients operated for 
drug-resistant partial epilepsy. Except for using prednisone or 
manitol, the patients with brain tumors were not under any type 
of treatment, such as chemotherapy or radiotherapy. Tissue 
samples used to prepare extracts for 1H MRS were taken from 
the same part of the tumor used for histological analysis. The 
main part of surgical specimens, not frozen, was processed 
for routine histopathology. The diagnosis was performed on 
10-µm thin cryostat slices after hematoxylin-eosin staining and 
followed the World Health Organization (WHO) classification 
system. The 4 specimens from patients with partial epilepsy 
used as control group were taken from macroscopically normal 
areas, as far as possible from the focal lesion.

To simplify the statistical analyses, without affecting our 
objective to identify the metabolic profiles of the different 
tumor types, the tumor samples were divided into 4 groups: 
high-grade neuroglial tumors (Hg), including glioblastomas and 
anaplastic oligoastrocytomas; low-grade neuroglial tumors (Lg), 
including non-anaplastic oligoastrocytomas and grade II astro-
cytomas; non-neuroglial tumors (NN), including meningiomas, 
adenomas, schwannomas and papilloma, and metastasis from 
breast, lung and kidney adenocarcinomas. This grouping was 
based on histological and clinical characteristics of each tumor 
used to guide the treatment and eventually prognosis.

Sample preparation
Tissue samples (average weight = 841.25 mg) were 

frozen in liquid nitrogen immediately after surgical removal 
to minimize early changes resulting from ischemia and then 
stored at -80°C. Frozen tissues were weighed, minced in 
liquid nitrogen and then extracted with cold aqueous PCA 
(0.3 M, 10:1, v/w). The resulting suspensions were cen-
trifuged (3000 g, 10 min, 0°C) and the supernatants were 
collected, neutralized with 1.5 M KOH (and pH adjusted to 
7.2) and then lyophilized. Fifty milligrams of the lyophilized 
brain tumor extract was suspended in 0.6 mL D2O contain-
ing sodium d4-trimethylsilylpropionate (TSP; 0.625 M), used 
as the zero chemical shift internal standard. The solutions 

were sonicated, centrifuged (3000 g, 10 min, 25°C) and 
transferred to a 5-mm MRS tube.

MRS spectroscopy
The 1H MRS spectra were acquired on a Varian  

INOVA-500 spectrometer (B0 = 11.7 Τ), operating at 499.886 
MHz for 1H, using a 5-mm triple resonance (H, C, N) inverse 
probe with a z-gradient. Each spectrum was acquired at 
25°C with 128 transients using 10,000.0 Hz spectral width, 
65,536 points and 30° excitation pulse with a width of 2.2 
µs. The acquisition time of each transient was 3.277 s. The 
intense residual water signal was suppressed using selec-
tive excitation (90° pulse) followed by a pulsed field gradient 
in the z-axis (wet1d). 1H MRS chemical shifts and coupling 
constants of the most characteristic metabolites were as-
signed using published data (9) and standard solutions of 
creatine, glycerol, serine, glycine, acetate in D2O/TSP.

Statistical analysis
For pattern recognition analysis, the spectra were 

digitized at intervals of 6.10 x 10-4 ppm over the range of 
4.25-1.22 ppm, generating 4964 variables. Each individual 
spectrum was corrected to phase shift and point wise scaled 
by the sum of all intensities (normalized to unit area) to 
minimize the effects of necrosis in the samples. The data 
set was organized in the matrix format XI,J with dimension I 
= 43 rows and J = 4.964 columns where each row contained 
the spectrum of a brain extract.

In this study, an implementation of discriminant analysis 
was applied, based upon partial least squares regression, 
a well-established and widely used multivariate regres-
sion method (PLS-DA). In PLS, the metabolic profiles are 
related to a set of response variables, Y, using a series of 
least squares fitting steps. Collinearities in X are handled 
by using a projection onto a reduced-dimension subspace, 
for which X is given by:

EptX += ∑
=

R

r
rr

1

T

                                         

Equation 1

where R is the number of factors in the model (or number 
of latent variables, LV), t and p are the scores and loading 
vectors for the rth factor, respectively, and the T superscript 
represents the matrix transpose operation. The score 
vectors describe the relationship between the samples in 
the model subspace and the loading vectors describe the 
importance of each variable within the model. E is the ma-
trix of residuals, normally distributed, which could be used 
to determine how well each sample fitted the model. PLS 
scores are used for data exploration, i.e., uncovering the 
relationships both within and between classes of metabolic 
profiles. More information on this technique can be found 
in the literature (10,11).

PLS can be used for discriminant analysis by building 
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a Y matrix consisting of dummy variables used to indicate 
class membership. For each binary class, a column of Y is 
generated by assigning a value of 0 or 1 to each sample, 
according to its class category. For example, zero value was 
used for control tissue samples and one for metastasis. A 
schematic representation of PLS-DA is given in Figure 1. 
The set of responses predicted by the model was rounded 
to either 0 or 1, and the true and predicted class member-
ships were then compared to evaluate how successful 
the model was at classifying the given samples. Once the 
PLS-DA model obtained is validated it could be used to 
make class membership predictions for new samples, i.e., 
predicting Y for new measured X data. 

Before building the PLS model, the data were autoscaled 
(each column was mean-centered and scaled by its stan-
dard deviation) to ensure that each metabolite had an 
equal chance to contribute to the multivariate description. 
The model was validated by internal leave-one-out cross-
validation. Sensitivity and specificity were calculated in the 
largest groups through the Coomans plot. This plot contains 
the square distance from each sample to the reduced-
dimension subspace spanned by the PLS factors, and thus, 
it is directly related to the matrix of residuals. Since these 
distances are independent and obey the normal distribu-
tion (plots not shown), the t-distribution for I - R degrees of 
freedom gives a critical value at the 95% probability level 
(the critical line for each class is indicated in the plot). Sen-
sitivity is given by the percent of brain tumors belonging to 
a given category and correctly identified as such and the 
specificity is defined as the percent of samples foreign to 
that category and classified as foreign. 

Results

Table 1 shows the histological diagnosis of the tumor 
samples. The tissue from patients with epilepsy (control 
group) revealed heterotopia (1 patient) and glyosis (3 
patients with mesial temporal sclerosis). 

Nine metabolites, resonating in the spectral regions 
used for PLS-DA modeling, were responsible for the sample 
discrimination. They were selected on the basis of their 
contribution to the regression vector when building the 
model (see Figure 1) and the correlation vector containing 
Pearson’s correlation coefficients between each variable 
and the class membership (each column of Y). As listed in 
Table 2, they are: acetoacetate (Ac), alanine (Ala), creatine 
(Cr), choline compounds [composed of free choline (Cho), 
glycerophosphocholine (GPC) and phosphocholine (PC)], 
γ-aminobutyric acid (GABA), glycine (Gly), glutamine and 
glutamate (Gln/Glu), myo-inositol (m-Ins), and N-acetyl 
aspartate (NAA).

Distinction between Hg and Lg tumors 
Selected variables from 1H MRS spectra of Hg and 

Lg tumors are highlighted in Figure 2 (top left). These re-

gions, which correspond to the metabolites of interest, are 
expanded to show their importance to discriminate the two 
types of tumors. Hg tumors (black profiles) showed a relative 
abundance of Gly, Ala, and Gln/Glu. m-Ins was decreased 
in Hg compared to Lg tumors (green profiles).

The PLS model was built on the selected variables for 
18 samples (Table 2). The number of factors in the model, 
LV = 1, determined by cross-validation, and the correla-
tion coefficient, r = 0.86, was sufficient to discriminate 
both classes of tumors. Figure 2B shows the score plot 
for factor 1 (f1) versus factor 2 (f2). This plot shows how 

Figure 1. Schematic representation of PLS-DA. The matrix, which 
defines the class membership for each sample, Y, is regressed 
against the matrix of spectral profiles, X. 

Table 1. Classification of brain tumor samples used in the present 
study according to the WHO.

Groups Number of samples

High-grade neuroglial tumors (Hg)
Grade IV astrocytomas 10
Anaplastic oligoastrocytomas 3

Low-grade neuroglial tumors (Lg)
Grade II astrocytomas 3
Non-anaplastic oligoastrocytomas 2

Non-neuroglial tumors (NN)
Meningiomas 10
Schwannomas 2
Adenomas 3
Papilloma 1

Metastasis 5
Controls 4
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the samples are clustered in the subspace defined by the 
first two LVs of the PLS model, describing 43.2% of the 
original information. 

Distinction between NN and neuroglial tumors
The same procedure described previously was applied 

to both data sets: NN and Hg; NN and Lg tumors. NN tumors 
(blue profiles) were characterized for having lower levels 
of Cr and NAA when compared to both Lg (Figure 3, green 
profiles) and Hg tumors (Figure 4, black profiles). NN also 
showed a higher relative abundance of Ala and Gly when 
compared with Lg tumors and Ac when compared with Hg 
tumors. m-Ins and Gln/Glu levels were relatively increased 
in Lg and Hg tumors, respectively. From the PLS score 
plot in Figure 3 (where two factors account for 50.9% of 
total variance) one can see that factor one (f1) is enough 
to discriminate NN from neuroglial tumors. That does not 
happen for NN and Hg tumors in Figure 4, where 2 factors 
were determined by cross-validation. From the PLS score 
plot (Figure 4B) it is clear that one factor was not enough 
to discriminate both types of tumors. 

In order to increase the reliability of the PLS-DA model, 
the specificity and sensitivity were calculated for the largest 
groups. Figure 5 shows the Comman plot for the comparison 
between Hg vs NN tumors, the two largest groups. According 
to this analysis, samples in the second and fourth quad-
rants belong to Hg and NN tumor categories, respectively. 
Those in the third quadrant were classified as belonging 
to both classes. Both models have a sensitivity of 100%, 
which means that are able to correctly recognize all the 
samples from their group. On the other hand, Hg and NN 
classes have a specificity of 50 and 37.5%, respectively. 
This means that Hg class is capable of identifying 50% of 

samples from NN tumors while NN class is able to recognize 
62.5% of Hg tumors. 

Distinction between metastasis and Hg tumors and 
metastasis and NN tumors

Metastasis (red profiles) had lower levels of m-Ins and 
Gln/Glu when compared with both Hg (Figure 6, black pro-
files) and NN tumors (Figure 7, blue profiles) and a particular 
distribution of Cho compounds with higher PC peak. NAA and 
Cr were important only in differentiating Hg tumors, depicting 
lower contents in metastasis. Using two LVs, a reasonable 
separation of respective classes was obtained (Figures 6B 
and 7B) with high correlation coefficients (r = 0.82 and 0.84 
for data in Figures 6 and 7, respectively). During the cross-
validation, two metastasis samples were misclassified (circled 
in Figure 6). Although these samples were found to fit the 
model quite poorly, they were retained in order to maintain 
a minimum realistic level of sample variability.

Distinction between metastasis and Lg tumors 
Despite the fact that these were small groups, some 

tendencies could be observed upon inspection of the 
expanded regions corresponding to the metabolites high-
lighted in the full spectra (Figure 8, upper left): metastasis 
had higher levels of Ala and Gly and lower levels of m-Ins, 
Cr and NAA. Again, as confirmed by the score plot, one 
LV produced a reasonable separation of respective classes 
(Figure 8B) with r = 0.88.

Distinction between controls and tumors (except Lg 
tumors)

Tumors (light green profiles, in Figure 9) had great 
amounts of Ala and PC and reduced Cr, m-Ins, NAA, and 

Table 2. Spectral regions used for building the PLS-DA regression models.

Spectral region (ppm) Metabolite: shift in ppm (multiplicity, coupling 
constants J in Hz)

Variable used in:

4.085-4.053 m-Ins: 4.07 (t, 2.9) LgxHg, LgxNN, LgxM
3.94-3.927 Cr: 3.94 (s) HgxNN, HgxM, LgxNN, LgxM, NNxM
3.648-3.479 m-Ins: 3.63 (t, 9.8), 3.55 (dd, 10.0 and 2.9), Gly: 3.57 (s) LgxHg, LgxNN, HgxM, MxNN, MxLg, TxC
3.311-3.261 m-Ins: 3.29 (t, 9.3) HgxLg, LgxM
3.252-3.201 Cho: 3.21 (s), PC: 3.23 (s), GPC: 3.24 (s) MxHg, MxLg, MxNN, CxT
3.051-3.034 Cr: 3.04 (s) HgxNN, HgxM, LgxNN, LgxM, CxT
2.495-2.430; 2.17-2.112 Gln/Glu: (m) HgxLg, HgxM,
2.322-2.283 GABA: 2.30 (t, 7.3) CxT
2.244-2.225 Ac: 2.24 (s) HgxNN
2.034-2.015 NAA: 2.02 (s) HgxNN, HgxM, LgxNN, LgxM, CxT
1.499-1.468 Ala: 1.49 (d, 7.2) LgxHg, LgxM, LgxNN, CxT

m-Ins = myo-inositol; Cr = creatine; Gly = glycine; Cho = choline; PC = phosphocholine; GPC = glycerophosphocholine; Gln/Glu = 
glutamine and glutamate; GABA = γ-aminobutyric acid; Ac = acetoacetate; NAA = N-acetyl aspartate; Ala = alanine. Multiplicity: s = 
singlet; d = doublet; dd = double doublet; t = triplet; q = quartet; m = other multiplet. Lg = low-grade neuroglial tumors; Hg = high-grade 
neuroglial tumors; NN = non-neuroglial tumors; M = metastasis; T = tumor; C = control.
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Figure 2. A, 1H MRS spectral profiles. Full spectra superimposed with the metabolites of interest highlighted (superior, left) and the 
expanded regions of interest to emphasize the differences between high-grade neuroglial tumors (black) and low-grade neuroglial 
tumors (green). B, Score plot of factor 1 (f1) vs factor 2 (f2) from PLS model (r = 0.86) built with 1 latent variable. Percentages in x- and 
y-axes refer to the amount of variance explained by the corresponding factor. For metabolite abbreviations, see legend to Table 2.
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Figure 3. A, 1H MRS spectral profiles: low-grade neuroglial tumors (green) and non-neuroglial tumors (blue). The expanded regions 
of interest emphasize the differences between the referred groups. B, Score plot of factor 1 (f1) vs factor 2 (f2) from PLS model (r = 
0.80) built with 1 latent variable. Percentages in x- and y-axes refer to the amount of variance explained by the corresponding factor. 
For metabolite abbreviations, see legend to Table 2.
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Figure 4. A, 1H MRS spectral profiles: high-grade neuroglial tumors (black) and non-neuroglial tumors (blue). B, Score plot of factor 1 
(f1) vs factor 2 (f2) from PLS model (r = 0.88) built with 2 latent variables. Percentages in x- and y-axes refer to the amount of variance 
explained by the corresponding factor. For metabolite abbreviations, see legend to Table 2.
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Figure 5. Coomans plot for the square distances of non-neuroglial (NN, blue) and high-grade neuroglial (Hg, black) tumors to their 
respective subspaces defined by the PLS factors.
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Figure 6. A, 1H MRS spectral profiles: high-grade neuroglial tumors (black) and metastasis (red). B, Score plot of factor 1 (f1) vs factor 
2 (f2) from PLS model (r = 0.82) built with 2 latent variables. The circle marks the two samples that were misclassified in the “leave-
one-out” cross-validation. For metabolite abbreviations, see legend to Table 2.
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Figure 7. A, 1H MRS spectral profiles: metastasis (red) and non-neuroglial tumors (blue). B, Score plot of factor 1 (f1) vs factor 2 (f2) 
from PLS model (r = 0.84) built with 2 latent variables. For metabolite abbreviations, see legend to Table 2.
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Figure 8. A, 1H MRS spectral profiles: low-grade neuroglial tumors (green) and metastasis (red). B, Score plot of factor 1 (f1) vs factor 
2 (f2) from PLS model (r = 0.88) built with 1 latent variable. For metabolite abbreviations, see legend to Table 2.
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Figure 9. A, 1H MRS spectral profiles: tumors (light green), except low-grade neuroglial ones, and controls (salmon). B, Score plot of 
factor 1 (f1) vs factor 2 (f2) from PLS model (r = 0.91) built with 2 latent variables. For metabolite abbreviations, see legend to Table 2.
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GABA as compared with the control group (salmon profiles). 
This was the only case where the separation between the 
two clusters could be observed in f1 although the number 
suggested by cross-validation in the PLS model was LV = 
2. One extra factor is required in order to better describe 
the variability in the sample mode or to compensate for 
possible non-linearity in the spectral mode.

It was not possible to build a good model to differenti-
ate controls from Lg tumors by PLS-DA, probably due the 
reduced number of samples and tissue similarities. 

Finally, the results from ‘leave-one-out’ analysis, sum-
marized in Table 3, show that from all PLS-DA analyses only 
two incorrect classifications occurred when 2 metastasis 
samples were classified as Hg tumor. 

Discussion 

We used high field 1H MRS in order to improve the 
identification of the biochemical profiles in brain tumor ex-
tracts. Application of PLS-DA allowed the identification of 
different metabolites and their correlation with distinct tumor 
types. Recently, multiple studies, such as the multicenter 
“eTUMOR” and “INTERPRET”, have shown similar results 
from the analysis of MRS with multivariate models (4-8). 
The advantage of these methods for data analyses is that 
they can simultaneously handle a large range of metabo-
lites providing a powerful tool for profile discrimination thus 
reducing the large number of spectral variables to a few 
key metabolites.

The predicted classes by “leave-one-out” cross-valida-
tion indicates PLS-DA as an excellent classification method 
for 1H MRS spectral data. In addition to the small number 
of errors, the model did not misclassify any control or Lg 
tumor samples and the 2 incorrect classifications occurred 
in groups that, despite histological difference, have similar 
aggressiveness (metastasis and Hg tumor, see Table 3). 

Our results demonstrated higher amounts of Gly in 
aggressive tumors (Hg and metastasis) compared with 

Lg (Figures 2 and 8) and lower levels of m-Ins in all tumor 
groups with the exception of Lg group (Figure 9) compared 
to control samples, a characteristic that was more evident in 
the aggressive ones, Hg and metastasis (Figures 2, 6, 7, and 
8). In addition to changes related to tumor metabolism, such 
as anti-apoptotic activity (12), protection against nutrient 
starvation and hyperosmolarity, regulation of mitochondrial 
permeability transition (13), and participation in tricarboxylic 
acid cycle, Gly levels decrease less than those of other 
metabolites in the areas of tissue necrosis in aggressive 
tumors (14). On the other hand, m-Ins is present in glial cell 
cultures and its levels increase according to the number of 
normal glial cells (15). Therefore, m-Ins reduction or absence 
in Hg, NN and metastasis groups indirectly indicates the 
absence or reduction of normal glial cells. In this study, the 
increase of Gly and the decrease of m-Ins were a general 
tendency in aggressive tumors, as recently described in in 
vivo and in vitro studies (16,17). However, at low magnetic 
fields with TEs of 135-270 ms, in vivo studies have shown a 
marked signal overlapping of m-Ins with Gly methylene at δ 
3.56 ppm and these two metabolites are usually evaluated 
together, limiting their diagnostic value. Guided by these 
findings, the observation of the signal decay from short to 
long TE at lower fields, where m-Ins decays faster, and the 
use of TEs as low as 30 ms at 7 T in vivo, which are able 
to differentiate these peaks (18), could be useful for the 
clinical investigation of aggressive tumors. 

We noticed higher levels of Gln/Glu in Hg neuroglial 
tumors (Figures 2 and 6), which also occurred in previous 
in vivo and in vitro studies (19). It is interesting to note 
that, in controls, Gln/Glu levels were slightly higher than 
in Lg tumors though not enough to differentiate them. This 
was believed to be due to the fact that the control samples 
were provided with areas of epileptiform activity (20). As 
m-Ins, Gln is primarily of astrocytic origin, despite being 
also present in NN cells (21). Our NN tumor samples also 
presented a discrete increase of Gln/Glu with respect to 
the metastasis (Figure 7) and no differences in relation to 

Table 3. Summary of PLS-DA classification results obtained from leave-one-out cross-validation.

Sample type Control (C) Low-grade neuroglial
tumors (Lg)

High-grade neuroglial
tumors (Hg)

Non-neuroglial
tumors (NN)

Metastases 
(M)

Misses

No. of samples 4 5 13 16 5
Lg/NN 5 16 0
Lg/M 5 5 0
Hg/M 15 3 2
Hg/Lg 5 13 0
NN/M 16 5 0
Tumors*/C 4 13 16 5 0
Hg/NN 13 16 0

*Except low-grade neuroglial tumors.
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the Lg ones (Figure 3). Therefore, Gln/Glu could be related 
to both histological type and tumor metabolism, which 
deserves further investigation.

Ala was increased in all tumor groups compared to 
controls (Figure 9). This is in agreement with other studies 
that showed that Ala concentration is much higher in brain 
tumor extracts (22). Increased Ala has been observed in vivo 
in meningiomas (23) and less frequently in other tumors. 
In NN tumors (Figure 3) the Ala increase is attributed not 
only to typical tumor pathways but also to the composi-
tion of original tumor cells since Ala concentration is three 
times higher in meningeal cells than in neurons (24). In 
addition, aggressive tumors such as metastasis and Hg 
tumors, usually have higher amounts of lipids that can 
cause an overlap with Ala peak in vivo, potentially prevent-
ing its precise measurement (21). Another difficulty for this 
measurement is that Ala level in normal brain is below the 
in vivo MRS detection threshold and only major variations 
could be detected. The same reasoning might be applied 
to the Ac, a product of amino acids (as Ala) degradation, 
that had increased levels in NN tumors, when compared 
with Hg tumors (Figure 4).

Cr levels were reduced in tumors (Figure 9), particularly 
in Hg ones (Figures 4 and 6) but also in NN and metastasis 
when compared with Lg tumors (Figures 3 and 8, respec-
tively). In tumors, alterations in oxidative phosphorylation 
linked to rapid cell proliferation are usually related to low 
Cr levels since Cr is a secure marker of endogenous me-
tabolism and energetic state of brain cells (25).

Similar alterations occurred with NAA levels. We 
observed relative decreased levels in tumors (Figure 9), 
particularly in Hg ones (Figure 4) but also in NN and me-
tastasis when compared with Lg tumors (Figures 3 and 8, 
respectively). This decrease probably indicates absence 
of mature neurons (26,27) in Hg tumors and, obviously, 
in NN tumors and metastasis. However, contrary to the in 
vivo studies, NAA was not important in differentiating Hg 
from Lg tumors (Figure 2) and Lg tumors from controls. 
This could be explained in part by the great variation in 
NAA concentration in Hg samples and by the fact that our 
control samples are from epileptic patients, a condition 
related with NAA decrease (28).

GABA was selected as an important metabolite in 
tumor and control tissue differentiation (Figure 9). It was 
detected only in control and Lg tumor extracts. GABA 
alterations have been reported before in epilepsy MRS 
studies (26) but in tumors its importance has been poorly 
discussed. Likewise NAA, GABA is related with neuronal 
(but also glial) metabolism, once it is the mainly inhibitory 
neurotransmitter, synthesized from glutamate in neurons. 
One hypothesis is that the absence of mature and/or 
well-differentiated neurons and glial cells in these tumors 
could be related with GABA decrease, but since there are 
no data to support this theory in the present study, it is 
purely speculative.

An additional unusual observation concerns to choline 
peak, composed by GPC, PC and Cho. We noticed a 
particular distribution of Cho compounds in tumors. They 
had a tendency in increasing PC (Figure 9), particularly in 
metastasis (Figures 6, 7, and 8). This is a novel observation 
in MRS of metastasis. Increased levels of Cho, a cellular 
membrane phospholipid, are related to the high cellular 
turnover in tumors. However, Cho is very sensitive to the 
tumor necrosis. Consequently, due to the high heterogene-
ity of neuroglial tumors, the significance of in vivo 1H MRS 
total Cho level is actually controversial (29).

Nevertheless, the differences in the Cho-containing 
compounds could be an important tumor marker. Elevated 
[PC] / [GPC] values were reported recently in a number of 
malignant tumor cells, derived from mesenchymal (menin-
gioma), glial (glioblastoma) (30) and neuronal (neuroblas-
toma) tissues (31) while in “normal” peripheral tumor tissue 
there is a large predominance of GPC (32). Previous studies 
detected overexpression of choline kinase alpha (ChoK), an 
enzyme involved in the synthesis of phosphatidylcholine, 
in a variety of human cancers (33). Therefore, our findings 
encourage the use of in vivo techniques that could efficiently 
differentiate PC and GPC (17) in the investigation of glial 
tumors and metastasis.

Classic biochemical studies have demonstrated that 
the vast majority of human and animal tumors have a high 
glycolysis rate, even under aerobic conditions (Warburg 
effect), an observation that has repeatedly been confirmed 
(34). Since Lac is the one of the main glycolysis product, 
this metabolite is expected to be an important tumor marker 
(35-38). However, in our study, Lac was not an important 
peak in PLS-DA. This was assigned to its fast and variable 
accumulation during and after the surgical procedure (39) 
leading to an irregular and unrestricted elevation of its 
levels in the samples. 

It was not possible to build a PLS model capable to 
differentiate Lg tumors and controls. In addition to the small 
number of samples in both groups we recognize that our 
control samples were extracted from epileptogenic areas 
that could present an abnormal metabolic profile, including 
alterations in NAA, GABA, Cho, and Cr (40). We assigned 
this impossibility also to metabolic similarity between these 
groups (Lg tumors are biologically closer to controls than 
any other tumor group) and the fact that Lg tumors infiltrate 
normal brain. Therefore, the Lg samples analyzed might 
contain variable proportions of “normal tissue”. 

One limitation of the present study is the number of 
samples, particularly in groups such as metastasis and Lg 
tumors. In these small groups, the specificity and sensitiv-
ity of the classification proposed here is smaller than that 
found in larger groups (Figure 5). Although we performed 
an “internal validation” using leave-one-out analysis and 
the models we obtained are in agreement with the previous 
studies discussed above, we are aware that the increase 
of the number of samples and an “external validation” us-
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