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a b s t r a c t

A quantitative structureeactivity relationship (QSAR) study of twenty flavonoid derivatives with anti-
mutagenic activity against 3-nitrofluoranthene (3-NFA) was performed by Partial Least Squares (PLS),
using Ordered Predictors Selection (OPS) algorithm for variable selection. Four descriptors (PJI2, Mor27m,
G1e and R4uþ) were selected and a good model (n ¼ 19; R2 ¼ 0.747; SEC ¼ 0.332; PRESScal ¼ 1.768;
F(2,27) ¼ 23.585; Q2

LOO ¼ 0.590; SEV ¼ 0.388; PRESSval ¼ 2.858; R2pred ¼ 0.591; SEP ¼ 0.394;
AREpred ¼ 5.230%; k ¼ 1.005; k0 ¼ 0.990; jR20 � R020j ¼ 0.109) was built with two latent variables describing
83.410% of the original information. Leave-N-out cross validation (LNO) and y-randomization were
performed in order to confirm the robustness of the model. The topological descriptors selected indicate
that the antimutagenic activity against 3-NFA depends on molecular size, shape and Sanderson elec-
tronegativity of flavonoids. The proposed model may provide a better understanding of the anti-
mutagenic activity of flavonoids and can be used as a guidance for proposition of new chemopreventive
agents.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

The pharmacological and toxicological properties of nitroarenes
have been the subject of several studies for many years. These
compounds are generated when polycyclic aromatic hydrocarbons
react with nitrogen oxides (NOx) under conditions that might be
expected in polluted air or incomplete combustion of organic
materials occurs. As a result, nitroaromatic compounds are present
in large number of mixtures such as cigarette smoke, coal fly ash,
diesel exhaust and grilled foods. In addition, nitroaromatic
compounds are also found in the chemical industry, and some
nitrofurans and nitroimidazoles are used as drugs. Therefore,
human exposure to one or more nitroaromatic compounds could
occur by a wide variety of routes [1,2].

2-Nitrofluorene (2-NF) is usually the dominant atmospheric
nitroarene, followed by nitrofluoranthenes and nitropyrenes, as for
example, 3-nitrofluoranthene (3-NFA) and 1-nitropyrene (1-NP)
(Fig. 1). Many nitroarenes have been demonstrated to exert muta-
genic activities in bacterial andmammalian test system. Thus, these
and other nitroarenes may be involved in the etiology of some
human cancers, namely lung and breast [1,2]. The carcinogenic
activity of nitroaromatic compounds is usually initiated by an
enzymatic nitroreduction. Considerable variation in the enzymes
responsible for such nitroreduction has been observed in different
organisms. In humans, xantine oxidase and microsomal NADPH-
cytochrome c have been identified as the enzymes involved in this
process. In Salmonella typhimurium TA98, the test strain used in the
Ames test (a biological assay to assess the mutagenic potential of
chemical compounds designed by the American biologist Bruce
Ames), the nitroreduction is carried out by “classical” bacterial
nitroreductase [1,3]. It has been proposed that mutagenicity of
nitroaromatics involves a redox cycling that creates reactive species
causing DNA lesions or formation of DNA adducts derived from the
activated forms [1].

The carcinogenicity andmutagenicity of some chemicals may be
modulated by other chemicals. It is well known that ingredients in
dietary and other plants, fruits and seeds, or some synthetic
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derivatives, may exert anticarcinogenic and antimutagenic effects
[2]. Epidemiological studies have indicated that the ingestion of
certain amounts of antioxidants such as C and E vitamins and
carotenoids, may retard or prevent cancer appearance [4]. This is
the central idea of the chemoprevention therapeutic approach,
defined as the use of natural or synthetic chemical agents to reverse,
suppress or even prevent progression of invasive cancer [5]. The
compounds with this property can act by different mechanisms [6],
although in some cases the specific mechanism of antimutagenic
effect of a compound (or compounds) is not well known.

Phenols and polyphenols are among the potent chemo-
protective agents. Regarding these compounds, plant flavonoids are
of outstanding importance. These non-toxic substances, found in
several foods, have been demonstrated to posses protective prop-
erties, for instance, antioxidative, anticarcinogenic, antimutagenic,
antiallergic, antiinflammatory and antiviral activities [2,7,8].

Considering the increasing interest in anticarcinogenicity and
antimutagenicity of natural and synthetic phenolic compounds,
especially flavonoids, a quantitative structureeactivity relationship
(QSAR) study was carried out in this work with the aim to obtain
mathematical models that could aid in understanding and be used
for prediction of the antimutagenic activity of flavonoids against
the nitrofluoranthene 3-NFA.

2. Chemistry

The flavonoids of interest were selected from a study performed
by Edenharder and Tang [2] on the antimutagenic activity of several

compounds in relation to the mutagenicity induced by 2-NF, 3-NFA
and 1-NP. In that study, 41 compounds are flavonoids, but only
subsets of 12, 20 and 15 compounds presented antimutagenic
activity quantitatively determined against, respectively, the three
cited mutagenics.

For this study, the 20 flavonoids (the largest subset containing
10 flavones, 8 flavonols and 2 flavanones), listed in Table 1, that
inhibited the mutagenic activity induced by 3-NFA were selected
for this study. The other compounds (21 compounds) were
described as inactive (ID50 value not provided) and they are not
appropriate for a quantitative study. The histogram in Fig. 2 shows
that the distribution of biological activities (pID50) of the twenty
compounds follows fairly well a normal distribution, indicating
that the biological activities are well spread inside the considered
range (pID50 4.967e7.000). From the values of pID50 presented by
these compounds, it can be seen that four of them present activity
around 5.000, nine of them in the range of 5.100e6.100, six
compounds have their activities between 6.100 and 6.990 and one
compound has activity around 7.000.

3. Pharmacology

The selected training set was assayed as the antimutagenic
effect on S. typhimurium TA98 by means of the Ames test. The
biological activity, ID50, (the dose of a compound in mmol/plate
required to inhibit the activity of a given mutagen by 50%, as
calculated from the corresponding doseeresponse curves) was
quantitatively determined relative to 3-NFA [2]. The ID50 values
were converted into �log ID50, or pID50, and are listed in Table 1.

4. Results

Four descriptors (PJI2, R4uþ, G1e and Mor27m) (Table 2) were
selected out of 1221, applying a pre-selection followed by the OPS
algorithm [9] and a refinement by Pirouette [10]. One outlier was
detected (14) by analyzing the leverage versus studentized residual
plot. Quercetin (14) is structurally similar to derivatives 6 (apige-
nin), 13 (kaempferol) and 18 (myricetin), meaning that these
compounds have similar values for the selected descriptors, what
can be seen in the dendrogram of Fig. 3. However, reasonable
difference in the pID50 values are observed between quercetin and
the other analogues (pID50 ¼ 5.153 for 14, and 7.000, 6.538 and
6.222 for 6,13 and 18, respectively) what may be caused by an error
in the experimental measurement. In the original paper, Eden-
harder and Tang [2] commented that quercetin (compound 14) was
the only one showing mutagenic activity in the absence of the
mutagens (2-NF, 1-NP and 3-NFA) and its antimutagenic activity
against the mutagens had to be corrected. This fact may lead to an
error in the presented antimutagenic activity, what is an indication
that compound 14 is really an outlier.

The training set used in this work presents a reasonable struc-
tural variability, showing substitutions in almost all carbon atoms
forming rings A, B and C, including even sugar among them.
However, its size is still small when the universe of existing fla-
vonoidic compounds is considered, especially with the removal of
compound 14, detected as an outlier. Thus, a rigorous statistical
validation process is necessary to assure the reliability of themodel.

The best PLS model equation (1) was obtained with two latent
variables describing 83.410% of original information (61.150% in the
first latent variable and 22.260% in the second one). The descriptors
in the model are capable to explain 74.670% and predict 59.050% of
variance. The F value, obtained from the F-test, was higher than the
corresponding critical-F (p¼ 2 and n-p-1¼16) with 95% confidence
interval (a¼ 0.05), and the values of PRESSval were smaller than SSY,
what confirms the statistical significance of the model.

Fig. 1. Structures of nitroarenes 2-NF, 3-NFA and 1-NP.
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pID50 ¼1:039þ 17:516ðPJI2Þ þ 0:932ðMor27mÞ þ 3:028ðG1eÞ
þ 8:218ðR4uþÞ ð1Þ

R2 ¼ 0.747; SEC ¼ 0.332; PRESScal ¼ 1.768; F(2,16) ¼ 23.584
(cF ¼ 3.634); Q2

LOO ¼ 0.590; SEV ¼ 0.388; PRESSval ¼ 2.858
(SSY ¼ 6.979).

The results obtained from LNO validation and y-randomization
analysis are shown in Fig. 4. The y-randomization test is useful to
verify the possibility that the explained and predicted variances by
the obtained model may suffer from chance correlation [11]. It can

Table 1
Selected training set from literature2 and the observed antimutagenic effects (in pID50) on mutagenicity induced by 3-NFA in S. typhimurium TA98.

Compound Name 3 5 6 7 8 20 30 40 50 pID50

1 5-Hydroxyflavone H OH H H H H H H H 5.357
2 6-Hydroxyflavone H H OH H H H H H H 6.699
3 7-Hydroxyflavone H H H OH H H H H H 5.456
4 20-Methoxyflavone H H H H H OCH3 H H H 5.046
5 Chrysin H OH H OH H H H H H 6.000
6 Apigenin H OH H OH H H H OH H 7.000
7 Apigenin-7-glucoside H OH H O-Glca H H H OH H 5.620
8 Luteolin H OH H OH H H OH OH H 6.523
9 Luteolin-7-glucoside H OH H O-Glca H H OH OH H 5.092
10 Tangeretin H OCH3 OCH3 OCH3 OCH3 H H OCH3 H 4.967
11 Flavonol OH H H H H H H H H 6.538
12 6-Methoxyflavonol OH H OCH3 H H H H H H 5.620
13 Kaempferol OH OH H OH H H H OH H 6.538
14 Quercetin OH OH H OH H H OH OH H 5.143
15 Isorhamnetin OH OH H OH H H OCH3 OH H 6.097
16 Rutin O-Rutb OH H OH H H OH OH H 5.022
17 Morin OH OH H OH H OH H OH H 6.155
18 Myricetin OH OH H OH H H OH OH OH 6.222
19 Naringenin H OH H OH H H H OH H 5.886
20 Hesperetin H OH H OH H H OH OCH3 H 6.097

a O-Glc: O-glucose.
b O-Rut: O-rutinose.

Fig. 2. Histogram presenting the distribution of the compounds in the pID50 range.

Table 2
Values of descriptors used for the formulation of model and LOO cross-validation
results.

Compound PJI2a Mor27mb G1ec R4uþd pIC50

obs
pIC50
pred

Residues

1 0.800 �0.375 0.172 0.060 5.357 5.629 �0.272
2 1.000 �0.288 0.193 0.065 6.699 6.445 0.254
3 0.800 �0.339 0.172 0.067 5.456 5.812 �0.356
4 0.800 �0.431 0.168 0.061 5.046 5.589 �0.543
5 1.000 �0.384 0.171 0.060 6.000 6.190 �0.190
6 1.000 �0.382 0.169 0.077 7.000 6.370 0.630
7 0.875 �0.434 0.150 0.057 5.620 5.499 0.121
8 1.000 �0.348 0.168 0.075 6.523 6.422 0.101
9 0.875 �0.561 0.149 0.044 5.092 5.179 �0.087
10 0.857 �0.550 0.153 0.028 4.967 4.770 0.196
11 0.800 �0.332 0.172 0.079 6.538 5.753 0.785
12 0.833 �0.403 0.167 0.064 5.620 5.686 �0.066
13 1.000 �0.390 0.168 0.078 6.538 6.436 0.101
14e 1.000 �0.420 0.167 0.077 5.143 e e

15 1.000 �0.419 0.163 0.064 6.097 6.142 �0.045
16 0.889 �0.575 0.139 0.040 5.022 5.041 �0.019
17 1.000 �0.435 0.167 0.089 6.155 6.768 �0.614
18 1.000 �0.386 0.165 0.075 6.222 6.397 �0.176
19 1.000 �0.393 0.167 0.067 5.886 6.287 �0.401
20 0.833 �0.563 0.162 0.066 6.097 5.327 0.770

a 2D Petitjean shape index.
b R maximal autocorrelation of lag 4/uniweighted.
c
first symmetry directional component of the Weighted Holistic Invariant

Molecular.
d 3D-MoRSE d signal 27/weighted by atomic masses.
e outlier.
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be observed that the results obtained for all randomizedmodels are
of bad quality when compared to the real model, and the intercepts
(Fig. 4A and B) are inside the acceptable values recommended in
the literature, i.e., the intercepts are below the limits 0.3 and 0.05,
respectively [12]. Dispersion of data points is observed in the
regions around the intercepts, what is reasonable situation for
smaller data sets. All obtained values for R2 and Q2 test are below

0.4 and 0.05 respectively (Fig. 4C). These results indicate that the
variance explained by the model was not due to chance correlation.

LNO cross-validation employs smaller training sets than the LOO
procedure and can be repeated several times due to the large
number of combinations when leaving many compounds out from
the training set once at a time. A QSAR model can be considered
robust when its average Q2

LNO values are relatively high and close to
the value of Q2

LOO [13]. The model obtained in this study has rela-
tively high averageQ2

LNO (0.578), with small variations for eachQ2
LNO

compared to Q2
LOO. The standard deviation for each “N” values is

small, with the maximum of 0.040 for L5O.
Another factor that can be evaluated in this model is the coin-

cidence between the signals of r (Pearson correlation coefficient)
for each descriptor with pID50 and the signals of coefficients in the
model. According to Kiralj and Ferreira [14], the mismatch between
the contributions of these two factors is an indication of lack of self-
consistency of the model. As can be seen in Table 3, the model
presents descriptors where the signs of their coefficients coincide
with the information provided by correlation with biological
activity, confirming the self-consistency of the model.

The data set was split into a training set formed by 14
compounds and a test set formed by the compounds 4, 5, 7, 13 and
20. This test set was used for external validation. These compounds
cover well the entire range of pID50 values in complete set, as can be
seen from the dendrogram in Fig. 5. The model built during the
external validation has statistical parameters similar to those found
for the model presented in equation (1) (R2 ¼ 0.780, SEC ¼ 0.320,
PRESScal ¼ 1.128, F(2,11) ¼ 19.467, Q2

LOO ¼ 0.612, SEV ¼ 0.376, and
PRESSval ¼ 1.984). Therefore, they can be considered equivalent.

Many authors argue that only externally validated models (after
complete internal validation) may be considered realistic and
applicable for drug design [13,15]. Some studies from the literature
support this conclusion [16,17]. The external validation results
(Table 4) show that the model has high external prediction power,

Fig. 3. Dendrogram (autoscaled data) of the training set, with compounds 6, 14, 13 and
18 highlighted.

Fig. 4. Plots of y-randomization test (A, B e C) and LNO cross-validation (D). In the LNO plot (D), each point refers to the average value from a test in triplicate, and the bars refer to
standard deviation.
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considering the proposed limits. Both values of k and k0 and the
relation jR20 � R020j are inside the acceptable ranges (0.85 � k or
k0 � 1.15, and jR20 � R020j < 0.3). The SEP and AREpred values are also
considered low, what is an indicative of low prediction error (low
deviation compared to the real value) for a synthesized derivative
based on this model.

Using the obtained model, it is possible to support the
hypothesis that compound 14 can be classified as an outlier. Its
predicted pID50 value is 6.137, which is 1.006 logarithmic units
above the experimental value from the work of Edenharder and
Tang [2]. In addition, prediction values for compounds 6, 13 and 18,
are close to that for compound 14, what agrees with clustering
tendency noticed in the dendrogram from Fig. 3.

Thus, the results of validation steps show that the model can be
classified as a good model, since, according to the criteria used, it
has good internal quality, it is robust, it does not suffer from chance
correlation, it is self-consistent, and it shows a good capacity to
external predictions.

5. Model discussion

All selected descriptors were obtained fromDragon 3.0 software
[18]. The PJI2 is a topological descriptor based on graph theory,
while the others (R4uþ, G1e and Mor27m) are descriptors depen-
dent of 3D optimized geometries (in this case, obtained in the
molecular modeling step with B3LYP/6-31G theory level). The four
descriptors influence positively the pID50. Through the coefficients

(þ0.411 for R4uþ, þ0.125 for Mor27m, þ0.427 for PJI2 and þ0.150
for G1e) obtained in the PLS model with autoscaled data, it is
possible to see that two of them, R4uþ and PJI2, are the most
significant for themodel. It is interesting to observe that descriptors
related to structural characteristics, usually accepted as important
for the activity of flavonoids (e.g. number of OH groups in the
molecules, Log P, or the dihedral angle between C and B ring)
[19,20], were not selected, but some related characteristics can be
encoded in the four selected descriptors.

It can be observed from the model obtained in this study that it
has reasonable statistical quality, high prediction capacity and
robustness in the desired limits. However, in a QSAR study, it is
always desirable to obtain an interpretative model that is able to
relate the physicochemical properties represented by the selected
molecular descriptors to the mechanism of action of the system
under study [15]. However, in this case the mechanism of action is
not exactly known. According to Edenharder and Tang [2], anti-
mutagenic flavonoids might modulate the mutagenic response of
nitroarenes by: (i) modification of the permeability of bacterial
membranes; (ii) physical, chemical or enzymatically catalyzed
extracellular interactions between flavonoids and mutagens;
(iii) interference with cellular mechanism leading to mutagenicity;
or (iv) effects of flavonoids on DNA repair, fixation and expression
on DNA damage caused by nitroarenes.

Thus, the information about the mechanism of action of this
specific set is based only on the possible encoded information in the
selected descriptors per se and other similar structureeactivity
studies on flavonoids [8,18e22]. An important point to be consid-
ered is the relative difficulty in the interpretation of the selected
descriptors. In general, the literature refers to topological and
geometric descriptors with information about shape, size and
branching [21]. For a better understanding of the selected
descriptors and a possible relation to the mechanism of anti-
mutagenic activity, information about the definition of each
selected descriptor was consulted in the literature and is presented
in the following text.

The most important selected descriptor is the 2D Petitjean
shape index (PJI2), also called graph-theoretical shape coefficient.
This molecular shape descriptor describes the degree of deviation
from a perfect cyclic topology [23]. Themolecular shape descriptors
are related to several physicochemical processes, such as transport
phenomena as well as entropy contributions, and interaction
capability between ligand and receptor [21]. The values of PJI2 vary
in a range of 0 (not a circumference) to 1 (perfect circumference). In
the training set, it is clear that the most actives compounds (6, 2,13,
8, 18 and 17) possess PJI2 values equal to 1 and all of them are
hydroxylated, not having methoxy or sugar groups. This fact indi-
cates that most compact flavonoidic compounds tend to have
a greater antimutagenic activity, maybe because they can bind in
a small binding site or penetrate easier through the cell membrane

Fig. 5. Dendrogram (autoscaled data) of the training set (without the outlier 14), with
the compounds from the test set highlighted.

Table 4
Predicted values of the test set and results of statistical parameters.

Compound pIC50 obs pIC50 pred Residues

4 5.046 5.517 �0.471
5 6.000 6.194 �0.194
9 5.092 5.091 0.001
13 6.538 6.411 0.127
20 6.097 5.388 0.708
R2pred 0.591
SEP 0.394
AREpred 5.230%
k 1.005
k0 0.990
jR20 � R020j 0.109

Table 3
Individual Pearson correlation coefficients (final model, without the outlier) and
standardized coefficients of the model.

Descriptor r Standardized
coefficients

R4uþ 0.773 0.411
Mor27m 0.606 0.125
PJI2 0.617 0.427
G1e 0.597 0.150
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of S. typhimuriumwhich protects the bacterial DNA. This descriptor
was selected in another study with flavonoids, carried out by
Rasulev and co-workers [24], that studied the structureeactivity
relationships relative to inhibition of lipids peroxidation, and also
presented positive contribution for the activity.

The descriptor R4uþ is the R maximal autocorrelation of lag
4/uniweighted, an R-GETAWAY descriptor. Geometry, Topology and
Atom-Weights Assembly (GETAWAY) descriptors are based on
a leverage matrix named “molecular influence matrix” (MIM),
proposed as a molecular representation easily calculated from the
spatial coordinates of the molecule atoms in a chosen conforma-
tion. The magnitude of the maximum leverage for a molecule
depends on its size and shape, and information about relations
between two atoms in the samemolecule can also be obtained. This
class of descriptors tries to match 3D-molecular geometry,
provided by the molecular influence matrix and atom relatedness
via molecular topology, with chemical information by using
different atomic weights (atomic mass, polarizability, van der
Waals volume, electronegativity and unwheighted). GETAWAY
descriptors are divided into two sets: H-GETAWAY, derived by using
only the information provided by the MIM, and R-GETAWAY, that
combines this information with interatomic distances in the
molecule obtained in a geometry matrix [18,25,26]. In the defini-
tion of R4uþ, lag is the topological distance, or all contributions
of each different path length in the molecular graph. Low terms, as
R1 and R2, represent small molecules where they are expected to
have low dependence on conformational changes as encoding
information on pairs of atoms very close to each other. The higher
the lag, the higher is the distance between two atoms [23]. Since
R4uþ is unweighted by some chemical property, it probably
encodes only geometrical information related to shape, and it is
relatively dependent on conformational changes. Similar to PJI2,
the tendency of higher values is also obtained for the most active
compounds and smaller values for the less active ones. However,
compound 14, one of the less active compounds, has a high value
for this descriptor as well, what strengthens the fact that it was
identified as an outlier. Also similar to PJI2, the shape information
dependent on 3D geometry can be related to a preferred confor-
mation that should be adopted to bind at the binding site or the
facility to penetrate through the bacteria membrane.

The descriptor G1e is the first symmetry directional component
of the Weighted Holistic Invariant Molecular (WHIM) index
weighted by atomic Sanderson electronegativities. The WHIM
descriptors are 3D-descriptors based on the calculation of principal
component axes calculated from aweighted covariance matrix (the
same fromGETAWAYplus atomic electrotopological state) obtained
by the 3D atomic coordinates. This class of descriptors contains
chemical information concerning molecular size, symmetry and
shape, and distribution of the constituent atoms [24]. Thus, G1e
indicates that the shape of molecules primarily determines the
electronic distribution and may be related to the importance of
electronegativity (behavior in redox process, electron release and
withdraw, etc), in the antimutagenic activity. For instance, in the
most active compound (6), the first two principal axes are parallel
to the plane of the flavonoid skeleton (Fig. 6). In general, the liter-
ature describes that the flavonoidic compounds have a planar
skeleton, which is an aromatic system with hyperconjugation and
it is responsible for antioxidative properties of flavonoids. This
p-conjugation system can bind free radicals and others species that
damage DNA and other cellular structures [8,19,20]. However, these
flavonoid characteristics can be related to the spatial shape
descriptors, as PJI2 and R4uþ. For instance, one of the less active
compounds, 16, is also a planar flavonoidic system, but the first
principal axis is moved out from the system because the big sugar
substituent in C3 (Fig. 6).

Finally, the descriptor Mor27m is a 3D-molecule representation
of structures based on electron diffraction (3D-MoRSE). These
descriptors are based on the idea of acquiring information from the
3D atomic coordinates by the transform used in electron diffraction
studies for preparing theoretical scattering curves [24]. A general-
ized scattering function, called the molecular transform, can be
calculated by using 3D atomic coordinates. The function takes into
account the 3D arrangement of the atoms without ambiguities as
those appearing when using chemical graphs [22]. In this case,
Mor27m is the “3D-MoRSE d signal 27/weighted by atomic
masses” descriptor, calculated by summing up the atomic weights
viewed by angular scattering functions (27 Å�1) and weighted by
atomic masses. This fact indicates the importance of atomic mass,
a steric property, and gives the basic idea that, the larger the
molecule, the lower the activity, because the values of Mor27m also
decrease when activity decreases. In fact, the less active
compounds,10 and 16, have Mor27m values of �0.550 and �0.575,
and the most active compounds, 6 and 2, present values of �0.382
and �0.288. It seems clear that small compounds easily penetrate
the bacteria through the cell membrane, thus contributing to the
antimutagenic effect.

Based on the above discussion, the antimutagenic activity of this
training set of flavonoids against 3-NFA is mainly dependent on the
size and shape of the molecules. This hypothesis can be related to
steric features (flexibility and size) important in the process of
binding to the active site. Taking into account that large molecules
are more difficult to diffuse through cell membranes, steric prop-
erties may also be related to the penetration into the bacteria.
Electronic properties, maybe also related to the binding in a specific
cellular structure or ability to capture reactive mutagens, are rep-
resented by the Sanderson electronegativity used for weighting the
WHIM descriptor.

6. Conclusions

In this study, a multivariate QSAR model for a set of twenty
flavonoid derivatives (10 flavones, 8 flavonols and 2 flavanones)
with ability to inhibit mutagenicity caused by 3-NFA in S. typhi-
murium TA98, has been proposed. The model basic statistics, its
internal and external prediction power, performance in LNO cross
validation and y-randomization have shown that the model is
statistically significant, robust and can be used for prediction
purposes. The inhibitory activity of these compounds is described
based on the topological descriptors PJI2, R4uþ, Mor27m and G1e,
indicating that the antimutagenic activity of the studied training
set is dependent mainly on the molecular size and shape, what
agrees with the literature on the activity of flavonoids. The
descriptors are related to the flavonoid interaction with a binding
site and/or penetration across the bacterial membrane. Therefore,

Fig. 6. Principal axes representation for compounds 6 and 16. x ¼ 1st axis, y ¼ 2nd
axis, z ¼ 3rd axis.
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this study provides deeper insight on important characteristics
regarding the antimutagenic activity of flavonoids (in this case,
considering specifically the 3-NFA as mutagenic). Thus, it may be
helpful for a better understanding of the activity of this class of
compounds and useful as a guidance for the proposal of new che-
mopreventive agents.

7. Methodology

Three-dimensional structures were built based on similar
crystallographic structures (codes DUMFAS, KEJBUWandWADRAV)
retrieved from Cambridge Structural Database [27]. Necessary
modifications of these structures and geometry optimization by
molecular mechanics (MMþ) and semi-empirical (AM1) quantum
mechanical methods were carried out using HyperChem 7 [28].
Through the option potential, a conformational search at AM1 level
was performed for all compounds, with increments of 10� at the
dihedral angle between the rings B and C. This conformational
search was carried out due to the steric hindrance present in
compounds with substituent at the positions 20 (4) and 3 (11 to 18),
and between the flavonoid basic structure and the sugar lateral
chain present in three compounds (7, 9 and 16). The most stable
geometries obtained by this process were further optimized at
Hatree-Fock level (HF/6-31G) followed by Density Functional
Theory level (B3LYP/6-31G), using Gaussian 03 [29]. The DFT/B3LYP
functional have been chosen because it is known from literature
that this method leads to quite satisfactory results for the analysis
of geometries and energies [7,30]. The electronic descriptors were
obtained after the final optimization. Other descriptors (steric,
topological, solubility) were obtained from Parameter Client [31]
and ALOGPS 2.1 [32] interfaces and DRAGON 3.0 Web Version
[18], leading to a total of 1221 molecular descriptors.

In order to obtain a statistically reliable QSAR model, a three-
step procedure was employed. In the first, the 1221 original
descriptors were reduced to 840 by eliminating those that pre-
sented the absolute value of Pearson correlation coefficient (jrj)
with pID50 lower than 0.3.

In the second step, the Ordered Predictors Selection (OPS)
algorithm [9] was used for variable selection. This algorithm is
capable of building partial least squares (PLS) [33] models on
autoscaled descriptors (preprocessing recommended for this work)
by rearranging the columns of the data matrix in such a way that
the most important descriptors, classified according to an infor-
mative vector, are placed in the first columns. Then, successive PLS
regressions are performed with increasing number of descriptors
in order to find the best PLS model. In this work, the regression
vector was used as the informative vector, and the cross validated
prediction error (SPRESS) obtained by the equation (PRESSval)1/2/n-
p-1 [34], where n is the number of samples and p is the number of
PLS factors, was used as a criterion to classify the models generated
by OPS.

At the third step, the set of nine descriptors selected by the OPS
method (that presented a SPRESS ¼ 0.493) was further refined using
the software Pirouette 4 [10], with removal of outliers and five
more descriptors, to obtain an optimized model which would fulfill
the criteria for being statistically significant, robust and
interpretative.

PLS regression was chosen as the regression method because
this method projects the original descriptors into a new set of
variables, called latent variables, which are orthogonal to each
other and then a regression is performed with this new set of
variables [35]. Thus, unlike multiple linear regression (MLR), the
number of original descriptors and the correlation among them are
no longer a problem, since the regression is carried out on a small
number of orthogonal latent variables.

The final model was thoroughly validated using a set of proce-
dures suggested in the literature [14]. The statistical parameters
listed in Table 5 were used to evaluate the quality of the model.
For the internal quality, the recommended limits are R2 > 0.6 and
Q2
LOO > 0.5 [28,36]. The SEC and SEV should be as lower as possible.

The PRESSval values should be lower than the sum of squares of the
response values (SSY) [37]. The F-test value should be higher than
the tabled critical-F (Fp,n-p-1, where n is the number of compounds
and p is the number of latent variables in the final model) and the
higher the difference between them, the more statistically signifi-
cant is the model [38].

The robustness of the optimized model was examined by leave-
N-out cross validation (LNO, N ¼ 1, /, 5) procedure. This test was
repeated three times for each value of “N”, with a randomization of
all rows from the data matrix and respective y values in each step of
LNO process. The average value of each Q2

LNO is expected to be close
to Q2

LOO (coefficient of multiple determination of leave-one-out

Table 5
Statistics parameters analyzed and correspondent equations.

Parameter Definition

Coefficient of multiple
determination of calibration, R2

1�

P
i
ðyi � byciÞ2

P
i
ðyi � yÞ2

Standard deviation of
calibration model, SEC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � byciÞ2
n� p� 1

vuut

Predictive Residual Sum of Squares
of Calibration, PRESScal

P
i
ðyi � byciÞ2

F-test (with 95% confidence interval), F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � byciÞ2

k

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � yÞ2

n� p� 1

vuut

Coefficient of multiple determination of
cross validation (“leave-N-out”, LNO), Q2

LNO

1�

P
i
ðyi � byviÞ2

P
i
ðyi � yÞ2

Standard error of cross validation, SEV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � byviÞ2

n

vuut

Predictive Residual Sum of Squares of
Calibration of Validation, PRESSval

P
i
ðyi � byviÞ2

Coefficient of multiple determination of
prediction, R2pred

a
1�

P
i
ðyi � byeiÞ2

P
i
ðyi � yÞ2

Average relative error of prediction, AREpred

P
i

jyi�byei j2

yi
100

n

Standard error of prediction, SEP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � byeiÞ2

nev

vuut

Slopes of the linear regression lines, k and k0

P
i
ðyi � byeiÞP
i
yei

and

P
i
ðyi � byeiÞP

i
yi

y: observed biological activity; y: average observed biological activity for the
training set; byci: estimated activity in the regression model; byvi: estimated activity
in the cross-validation; byei: estimated activity in the external validation; n: number
of samples in the training set; nev: number of samples in the test set; p: number of
latent variables in the model.

a For R2pred, y is the average value of observed activities for the training set without
the test set.
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cross validation) with standard deviations close to zero [15]. The
possibility of chance correlation was tested using y-randomization
analysis [36], where the y vector was scrambled 50 times [37].
The approach suggested by Eriksson and co-workers [12], based on
the absolute value of the Pearson correlation coefficient between
the original vector y and the randomized vectors y, was used to
quantify chance correlation. In this approach, two regression lines
are built using these correlation coefficients (x-axis) and the R2 and
Q2
LOO values (y-axis). The intercepts of the equations obtained in the

linear regression should be less than 0.3 for R2 and 0.05 for Q2
LOO.

Once internally validated, the complete data set was split into
training and test sets. The test set was selected using hierarchical
cluster analysis in such a way that the entire range of pID50 and the
structural variations were well represented. The parameter R2pred
was used as ameasure of the predictive power of a QSARmodel. For
this work, it was used the recommended limit of R2pred > 0.5 [39,40].
However, this is not a sufficient condition to guarantee that the
model is really predictive. It is also recommended to check: (i) the
slopes k or k0 of the linear regression lines between the observed
activity (yi) and the predicted activity in the external validation
(byei) (Table 4), where the slopes should be 0.85� k or k0 � 1.15; and
(ii) the absolute value of the difference between the coefficients of
multiple determination, R20 and R020, smaller than 0.3 [11,13]. It was
also considered adequate to check the SEP and AREpred values,
where the minimum possible values are desirable.
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