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ABSTRACT

In this work, the potential of mid-infrared diffuse reflectance spectros-
copy with Fourier transform for discrimination of 29 commercial Brazilian
coffee samples with different industrial processing, i.e., caffeine extraction and
roasting degree, was evaluated. The statistical treatments applied to pre-
treated spectral data were principal component analysis and partial least
squares – discriminant analysis (PLS-DA). The ordered predictors selection
method was used for variable selection. The chemometric analyses of the
mid-infra-red spectra allowed inferring on the lower carbohydrate, caffeine
and chlorogenic acid concentration as well as on the higher water content in
the decaffeinated coffee. The technique also allowed speculation on the higher
lipid and lower water content in the dark roasted coffee compared with
traditional roasted coffee. A clear discrimination of decaffeinated from
medium and dark roasted coffees was observed in PC1. PLS-DA was used for
the discrimination between medium and dark roasted coffees. A model with
one latent variable correctly classified 100% of the external validation and
prediction samples according to their roasting degree.

3 Corresponding author. TEL: +55-19-3521-3102; FAX: +55-19-3521-3023; EMAIL: marcia@
iqm.unicamp.br

Journal of Food Quality 33 (2010) 212–227.
DOI: 10.1111/j.1745-4557.2010.00309.x212
© 2010 Wiley Periodicals, Inc.



PRACTICAL APPLICATIONS

Diffuse reflectance mid infrared spectroscopy (DRIFTS), principal com-
ponent analysis and partial least squares were successfully applied to discrimi-
nate decaffeinated coffees from nondecaffeinated coffees and to discriminate
roasted coffees by their roasting degree. This study have shown that DRIFTS
coupled with chemometrics consists in a simple and straightforward analytical
method for monitoring the roasted coffee authenticity, and the results could
help in developing an alternative and inexpensive method for quality control of
coffee products.

INTRODUCTION

The annual world coffee market is worth about 60 billion dollars (Brando
2007). Production and trade systems, as well as processing conditions and
chemical composition of the beans, contribute to the final price of the coffee.
Traditionally, strategies used to certify chemical characteristics of coffee have
relied on wet chemistry, but these methods are destructive, time-consuming
and sometimes expensive. As demand for rapid and cheaper controls is
growing, wet chemistry methodologies are being replaced by dry methods
(Rubayiza and Meurens 2005).

Recent research has shown that near-infrared (NIR) and mid-infrared
(MIR) spectroscopy are useful in the food industry (Chen et al. 2006; Small
2006; Cen and He 2007; Esteban-Díez et al. 2007). Such methodologies, when
coupled with chemometric data analysis techniques, may be regarded as rapid
and reliable means of process control, as well as for product quality and safety
certifications (Pedro and Ferreira 2005; Li et al. 2006; Xie et al. 2007). Con-
trary to the great number of studies carried out by NIR diffuse reflectance
spectroscopy to characterize food products (Downey et al. 2003; Andrés and
Bona 2005; Yan-de et al. 2007) and coffee varieties (Kemsley et al. 1995;
Briandet et al. 1996; Esteban-Díez et al. 2004; Rubayiza and Meurens 2005;
Pizarro et al. 2007), similar studies dealing with MIR diffuse reflectance
spectroscopy are scarce (Reeves and Zapt 1998; Wilson and Tapp 1999;
Bertelli et al. 2007).

MIR has potentially some advantages over NIR for the analysis of food,
and recent interest has increased its use in areas where NIR spectroscopy has
been successfully used (Fagan et al. 2007; He et al. 2007). Spectral features in
the NIR region are due to molecular absorptions of overtones and combina-
tions of fundamental vibrational bands from the MIR region, limiting its use
for classification purposes. Band assignments are not easy to interpret because
one single band can result from a combination of severely overlapped
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vibrations. The weak and broad bands are the other shortcomings of this
method. On the other hand, absorbances in MIR region are richer of qualitative
(molecular structures) information that can be easier distinguished and inter-
preted (Olinger and Griffiths 1993). Therefore, Fourier-transform MIR spec-
troscopy is an appealing technique to be used for classification purposes when
qualitative characterization and interpretation is important (Bertelli et al.
2007).

The majority of MIR applications for food quality in the literature com-
prise analysis of liquid foods, such as wines, fruit juices and beers (Cozzolino
et al. 2003; Reid et al. 2005; Inón et al. 2006). More recently (Ferrão et al.
2003; Karoui et al. 2006; Fagan et al. 2007), solid samples like cheese and
coffee have also been analyzed by diffuse reflectance infrared Fourier trans-
formation spectroscopy (DRIFTS).

DRIFTS can be used to detect compositional differences between food
samples on the basis of vibrations of several chemical groups at specific
wavelengths in the MIR region of the spectrum. The results from DRIFTS can
provide information regarding the chemical fine structure of a food sample,
allowing screening of food products based on qualitative attributes (Reid et al.
2005).

The color and composition of coffee beans are changed during the roast-
ing process. A combination of temperature and time determines the intensity of
heat applied to the product and the degree of modification in the grains. The
higher the intensity of the roasting process the higher the chemical degrada-
tion. Release of large amounts of carbon dioxide and formation of several
hundreds of substances associated with the taste and aroma of the coffee occur
during the roasting. A heavy roasting process implies dark brown bitter beans
and the lack of typical coffee aroma, whereas a light roasting process may be
insufficient for the completion of all pyrolytic reactions, resulting in light
brown coffee with underdeveloped organoleptic characteristics (Buffo and
Cardelli-Freire 2004).

When studying the roasting of arabica coffee, Toci et al. (2006) found
that the process degraded a considerable amount of sacarose (50% in light
roast) and clorogenic acids. About proteins, the reduction was around 10% in
light degrees of roasting, increasing to 20% in dark roasted beans The con-
centration of trigoneline was also reduced with the degree of roasting (Toci
et al. 2006).

Besides roasting, decaffeination is another process commonly applied to
green coffee beans. The influence of the decaffeination process on the bean
composition and on the final product quality depends on the extraction
method. Although coffee decaffeination processes may be done using super-
critical fluid (CO2), most of the decaffeination methods employ organic
solvents like dichloromethane and ethyl acetate (Clarke and Vitzthum 2001).
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Decaffeination with dichloromethane causes modifications in chemical
composition of the beans. Reduction of the total glycides, represented mainly
by a considerable loss of sucrose (20 and 60% for C. canephora e and C.
arabica, respectively), has been observed. It has been shown that the process
may also induce the extraction of 16 % of the clorogenic acids in C. arabica
and 11 % in C. canephora (Toci et al. 2006).

In the present work, the feasibility of mid-infrared diffuse reflectance
spectroscopy coupled with chemometric analysis to differentiate commercial
coffees was investigated. Principal component analysis (PCA) (Wold et al.
1987) and partial least squares-discriminant analysis (PLS-DA) (Barker and
Rayens 2003) were applied to discriminate decaffeinated coffees and to clas-
sify roasted coffees by the roasting degree.

MATERIALS AND METHODS

Coffee Samples and Data Acquisition

Twenty-nine samples of commercial Brazilian coffees were purchased
from local stores. Twenty-one of them were used to build the calibration model
(calibration set). From these, seven were decaffeinated and light roasted (DC),
seven were traditional or medium roasted (TR) and seven were dark roasted
(DR). All samples were from the same brand from different production
batches. The eight remaining samples, five medium roasted (TR) and three
dark roasted, were used for prediction (prediction set).

DRIFT Spectra Acquisition

Each sample was ground for 1 min with mortar and pestle before loading
into the static sample cup with five cavities (0.5 cm of surface diameter and
0.20 cm3 of internal volume). Sample compression inside the cup was avoided,
and the surface was leveled with a spatula. All the spectra were collected using
a Nicolet 520 FT-IR Spectrometer equipped with a diffuse reflectance acces-
sory model Jasco DR81, using 256 scans in the 4,000–400/cm range, with
4/cm of nominal resolution and 64 interferograms co-added before Fourier
Transformation. KBr was used for the background spectrum. Three different
portion of a coffee sample were placed into each cavity of the instrumental cup
and the spectrum recorded.

Data Analyses

The original spectral profiles were organized into a matrix format X
(I ¥ J), where each replicate was considered as one sample. Data analysis was
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carried out in Matlab 6.5 software (The MathWorks, Co., Natick, MA) using
the computational package PLS_Toolbox (Eigenvector Research, Inc. –
PLS_Toolbox version 3.02.) (Wise et al. 2004).

PCA was the method used for exploratory data analysis (Wold et al.
1987). In this method, a J-dimensional matrix X is projected into a lower,
K-dimensional space through a decomposition into scores S (I ¥ K) and load-
ings L (J ¥ K) matrices whose product models the systematic variation in the
data, and into a residual matrix R (I ¥ J), which, in the ideal case, contains only
the measurement errors. The plot of two columns from the scores matrix S
against each other gives a two-dimensional projection of original data set,
whereas the plot from columns of the loadings matrix L displays the correla-
tion among the variables (Beebe et al. 1997).

Whilst PLS is used as a calibration method, PLS-DA is a classification
method wherein a model is built between the matrix X and the matrix of
known classes Y (Barker and Rayens 2003). In PLS-DA each class is
described by a column in Y. A value 1 or 0 is assigned to each class variable,
depending on the class to which an object belongs. The model, of course, will
not predict either 1 or 0 exactly, so a threshold (predicted probability) is
determined, above which a sample is considered to be in the class and below
which a sample does not belong to that class. Basically, a normal distribution
is fitted to the predicted values from the PLS-DA calibration model and then
used to calculate the probability (based on Bayes’ Theorem) of a given pre-
diction sample value (Xing et al. 2007). Using the estimated distribution for
each class, thresholds are calculated and the prediction samples that are
located between the range of the estimated distributions, are the samples
predicted as false positives and false negatives.

The performance of the final PLS-DA model was evaluated in terms of
the root mean square error of cross validation (RMSECV) and by the corre-
lation coefficient of cross-validation (rcv). A leave-one-sample-out cross-
validation was performed. In this procedure one spectrum was excluded at a
time, the model was built and the estimated class of the excluded sample was
used to calculate RMSECV. Once the model had been internally and externally
validated, it was tested for the prediction of eight new samples.

Two pre-treatments were applied to the original data matrix in this study.
First, a Savitzky-Golay smoothing (Savitzky and Golay 1964), with a window
size of 10 points, was used to reduce random variations (experimental noise)
and then, the systematic variations were reduced by a multiplicative signal
correction (MSC) (Isaksson and Naes 1988).

A visual inspection of the spectra indicated that the decaffeinated samples
could be discriminated from the others and so, a visual selection was carried
out prior to the exploratory analysis using PCA. The ordered predictors selec-
tion (OPS) method (Teófilo et al. 2009) was applied to find the best spectral
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regions for construction of the PLS-DA model. In this method, an intuitive
vector is formed by a combination of vectors, such as regression and correla-
tion vectors, among others. Based on the absolute values of the informative
vector elements, the importance of each response (instrumental) variable to the
model is defined. In the next step, the response variables are reordered into
decreasing order according to their importance. Finally, the ordered variables
are tested using increments over a previously defined window. The RMSECV
and correlation coefficient of cross-validation (rcv) values are stored for each
analyzed window. The best set of variables is indicated by the lowest
RMSECV and highest rcv.

RESULTS AND DISCUSSION

PCA – Discrimination of Decaffeinated Coffees

The original spectra from calibration set were organized into a matrix
format (63 ¥ 1,856) and pre-treated as described in Materials and Methods
section. Even after pre-treatment, the spectra still contained regions with high
signal variations of instrumental origin (2,380–2,280 and 500–400/cm), thus
these regions were excluded from data analysis, resulting in a data matrix
(63 ¥ 1,772). PCA was applied to this data matrix and in PC2 two well
distinguished clusters were revealed (Figure not shown), one of them consist-
ing only of DC samples while TR and DR were completely mixed into the
other.

Figure 1A shows an example of two overlapped spectra; one resulted
from the mean of traditional and dark roasted samples and other from the mean
of decaffeinated coffee. It was visible that several regions could distinguish
DC from the others. In order to get more insight into which spectral regions
could be responsible for this discrimination, a visual variable selection was
applied to the pretreated spectra. From 1,772 pre-treated variables, 269 vari-
ables were selected and organized in 9 regions, as indicated with numbers in
Fig. 1A. It can be seen in this figure that the regions selected coincide with
those of largest spectral differences. Figure 1B shows the expanded region
indicated in Fig. 1A for the purpose of better visualization.

PCA was applied to the nine regions selected. From the scores plot in
Fig. 2A, a distinct visual clustering appeared between decaffeinated and the
other two classes when the data were displayed with respect to the first two
principal components. Decaffeinated coffees were located on the right side of
PC1, which describes 66.57% of the original information, well separated from
medium and dark roasted samples on the right side of PC1.

The loadings plot of PC1 (Fig. 2B) indicates that regions 1, 16 and 17
have positive values and significantly contribute to the discrimination of
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decaffeinated coffee samples from the others. On the other hand, medium and
dark roasted coffee samples have negative scores (Fig. 2A) because they are
characterized by higher absorbance in the other six regions which have nega-
tive loadings values, as shown in Fig. 2B.

According to Kemsley et al. (1995), carbohydrates are responsible for the
absorbance in the regions 10 and 11, named as “finger print” regions. The
negative loadings of these two regions (Fig. 2B) indicated that carbohydrate
concentrations in decaffeinated samples, although less roasted, are lower than
in the non-decaffeinated coffees, confirming previous findings that the caffeine
extraction process also reduces the sugar concentration in the beans (Toci et al.
2006).

The spectral region 1 from 3,600 to 3,450/cm is well known to represent
O-H bond stretching (Silverstein and Webster 1998) and could characterize
water and carbohydrates. Since the experiments indicated that the carbohy-

FIG. 1. MEAN MID-INFRARED SPECTRA OF DECAFFEINATED (—), AND TRADITIONAL
AND DARK ROASTED (—) COFFEE SAMPLES

The regions visually selected for discrimination of both types of coffee are indicated in (A) and the
expanded region for better visualization is indicated in (B).
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drate concentration was reduced by the overall process (decaffeination and
light roasting) the stretching of region 1 (Fig. 1) should be explained mainly by
the higher water content. These results indicated that decaffeinated and light
roasted samples had more intrinsic water than traditional and dark roasted
coffees.

FIG. 2. PC1 ¥ PC2 SCORES PLOT (A)
(�) Decaffeinated samples, (�) dark roasted and (�) medium roasted. PC1 loadings plot indicating

the nine regions visually selected for PCA analysis (B).
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The results shown in loadings of PC1 (Fig. 2B) indicate lower absor-
bance in regions 4 (1,795–1,750/cm), 6 (1,710–1,680/cm) and 7 (1,665–
1,630/cm) for decaffeinated samples. These regions exhibit characteristic
bands arising from carbonyl C=O bond stretching (Silverstein and Webster
1998). Proteins, free amino acids, lipids, chlorogenic acids and alkaloids
(caffeine and trigonelline) could be responsible for the absorbances in these
regions. According to Fabian et al. (1992), wavenumbers ranging from 1,600
to 1,700/cm are highly related to chlorogenic acids and caffeine concentra-
tion in coffees. So, the smaller intensities in regions 4, 6 and 7 demonstrate
that decaffeinated samples present lower concentrations of caffeine and chlo-
rogenic acids, in agreement with the findings of Toci et al. (2006) that the
decaffeination process, besides caffeine, also extracts chlorogenic acids.

Table 1 indicates the wavenumbers of stretching and deformation vibra-
tions with the respective vibrational modes that occur in the 9 regions visually
selected to discriminate the coffee samples and also shows other regions that
will be relevant for the next discriminant study.

TABLE 1.
CHARACTERISTIC INFRARED ABSORPTION FREQUENCIES AND ATTRIBUTIONS IN

REGIONS SELECTED FOR PC

Visual* and OPS†
regions selected

Wavenumber
range‡ (cm-1)

Vibrational modes

1*† 3,600–3,450 O-H str.
2† 3,370–3,350 N-H str., NH3

+ str., NH2 str.
3† 3,000–2,820 C-H str.
4*† 1,795–1,750 C=O str.
5† 1,750–1,720 C=O str.
6*† 1,710–1,680 C=O str.
7*† 1,665–1,630 C=C str., C=N str., C=O str.
8* 1,610–1,540 NO2 str., NH3

+ def., N=N str., C=O str.
9† 1,570–1,500 NH3

+ def., N=O str., C=C str., N-H def.
10* 1,500–1,465 C=C str., N=O str., NH def.
11*† 1,455–1,415 C-H def., S=O str.
12† 1,400–1,380 O-H str., C-H def., CH3 def.
13† 1,325–1,295 S=O str., C-H def., NO2 str.
14† 1,275–1,260 O-NO2 vib., ROR str.
15† 1,240–1,170 S=O str., C-N vib.
16* 945–915 C-H def.
17* 804–784 C-H def.

* Variables selected visually.
† Variables selected by OPS.
‡ Values of wavenumber extracted from Parikh 1974; Silverstein and Webster 1998.
def., deformation; str., stretching; vib, vibration.
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Partial Least Squares-Discriminant Analysis

As the TR and DR coffee samples were mixed in the scores plot of
previous analysis (Fig. 2A) and well distinguished from DC, partial least
squares – discriminant analysis (PLS-DA) was applied to discriminate/classify
the samples according to their roasting degree. Thus, the decaffeinated coffees
were excluded from the original data matrix The calibration set (14
samples = 42 replicates) was randomly split into the training set consisting of
10 samples (30 replicates) and external validation set of four samples (twelve
replicate spectra). For prediction, three dark and five medium roasted samples
were used (24 replicates).

To construct this model, it was important to identify those regions that
could be chemically related to the roasting degree. The important variables
of the pre-treated spectral profiles that could be involved in the discrimina-
tion of types of coffee samples were selected by the OPS method (Teófilo
et al. 2009) and the original variables were reduced from 1,772 to 208.
Figure 3A shows an example of two overlapped spectra, one from traditional
and one from dark roasted coffee. Figure 3B,C show the expanded regions
indicated in Fig. 3A.

When using only one latent variable, the statistical parameters indicated
a low root mean square error of cross validation (RMSECV = 0.171) and a
high correlation coefficient (rcv = 0.938). Measured values (y = 1) correspond
to the traditional class while y = 0 is used for dark roasted samples. The
calculated thresholds (see materials and methods) were 1 � 0.584 and
0 � 0.416 for traditional and dark roasted, respectively. All samples from
the external validation and prediction sets were correctly classified.

Figure 4A shows the scores for latent variable 1 (LV1) plotted against
LV2. In this plot the samples from calibration, and prediction sets were
clustered in the subspace defined by the first two components of the PLS-DA
model. LV1 described 43.81 % of total variance and revealed good separation
of the medium from dark roasted coffees.

The loadings plot of LV1 (Fig. 4B) indicated that regions 1, 2, 6, 7, 9 and
12 with positive values significantly contributed to the discrimination of tra-
ditional coffee samples (higher absorbance) from dark roasted samples. The
other seven regions, important to dark roasted coffees, have negative values.

As mentioned previously in PCA analysis, water is one of the main
reasons for the spectral intensities in the region between 3,600 and 3,450/cm
(region 1), confirming that dark roasting coffees contain lower amounts of
water.

Lipid degradation during the coffee roasting is very low (Toci et al.
2006). Since the dry mass of the grain decreases, the higher the roasting
degree, higher is the lipid concentration (w/w) in the roasted coffee bean.
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Thus, region 3 in Fig. 3, with negative loadings (corresponding to C-H str. in
Table 1) could be explained by an increase in the lipid content.

The degradation of the main classes of compounds that constitute the
green coffee beans (clorogenic acids, amino acids, alkaloids and carbohy-
drates) generally into volatile and non volatile compounds, during the roasting
process (Toci et al. 2006), would be responsible for the differences in the
expanded region C (Fig. 3C) but, due to the highly complex composition of the
coffee matrix, it was not possible to infer about compounds absorbing in this
spectral regions selected by the algorithm.

Table 1 also shows the wavenumbers of stretching and deformation vibra-
tions with the respective vibrational modes in the regions selected by OPS to
discriminate medium from dark roasted samples.

PLS-DA analysis has shown that it is possible to discriminate medium
and dark roasted coffees by performing a variable selection. The discrimina-
tion was masked when all useful and nonwavelength were take into account.

FIG. 3. MID-INFRARED SPECTRA REGIONS SELECTED BY THE OPS METHOD FOR THE
CONSTRUCTION OF THE PLS-DA MODEL

Traditional (—) and dark roasted (—) coffee samples (A); expanded region 1 (B) and expanded
region 2 (C).
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CONCLUSIONS

The results reported in this work revealed that diffuse reflectance MIR
spectroscopy coupled with chemometric tools had enabled the maximization

FIG. 4. LV1 ¥ LV2 SCORES PLOT FROM PLS-DA MODEL
Dark roasted (�) and medium roasted (�) coffee samples of the calibration set. Dark roasted (+)
and medium roasted (*) samples of the prediction set (A). Lv1 loadings plot shows the 10 regions

selected by ops method (B).
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of chemical information on processed coffees. The chemometric analyses of
the MIR spectra allowed inferring on the lower carbohydrate, caffeine and
chlorogenic acid concentration as well as on the higher moisture in the decaf-
feinated coffee compared with traditional and dark roasted coffees. The tech-
nique also allowed speculation on the higher lipid and lower moisture content
in the dark roasted coffee. Moreover, the chemometric analysis allowed visu-
ally locate the wavenumbers for the caffeine and chlorogenic acids in coffee.
The exploratory data analysis (PCA) showed the high potential of the tech-
nique to discriminate decaffeinated from non decaffeinated coffees. The
PLS-DA regression model, using only one latent variable, correctly classified
all training and prediction coffee samples according to their roasting degree.
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