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Computational performance and
cross-validation error precision of five PLS
algorithms using designed and real data setsy
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J. Chemom
An evaluation of computational performance and precision regarding the cross-validation error of five partial least
squares (PLS) algorithms (NIPALS, modified NIPALS, Kernel, SIMPLS and bidiagonal PLS), available and widely used in
the literature, is presented. When dealing with large data sets, computational time is an important issue, mainly in
cross-validation and variable selection. In the present paper, the PLS algorithms are compared in terms of the run time
and the relative error in the precision obtained when performing leave-one-out cross-validation using simulated and
real data sets. The simulated data sets were investigated through factorial and Latin square experimental designs. The
evaluations were based on the number of rows, the number of columns and the number of latent variables. With
respect to their performance, the results for both simulated and real data sets have shown that the differences in run
time are statistically different. PLS bidiagonal is the fastest algorithm, followed by Kernel and SIMPLS. Regarding
cross-validation error, all algorithms showed similar results. However, in some situations as, for example, when many
latent variables were in question, discrepancies were observed, especially with respect to SIMPLS. Copyright � 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multivariate calibration is used to develop a quantitative
relationship between several predictor variables and a property
of interest (the response or dependent variable). The regression
problem, i.e. how to model one or several dependent variables,
Y, by means of a set of predictor variables, X, is one of the most
common data-analytical problems in science and technology.
The dependent variables in chemistry are usually concen-
trations, biological activities, sensory data responses, among
others, while the predictor variables are represented respect-
ively by measured spectra, physicochemical descriptors and
chromatograms. The solution of this problem is obtained by
solving the equation Y¼XB, where B is the regression matrix or
vector, given by B¼XRY where XR is the Moore–Penrose
generalized inverse [1,2].
Traditional modeling of Y by means of X is based on the use of

MLR (Multiple Linear Regression), which works well as long as
there are only a few X-variables compared to the number of
samples and they are poorly correlated to each other, i.e. X is full
rank. Data matrices can be very large in distinct applications of
multivariate calibration, e.g. in QSAR/QSPR (Quantitative Struc-
ture Activity/Property Relationship) studies [3], data mining [4],
near infrared spectroscopy (NIR) [5], nuclear magnetic resonance
(NMR) [6], chromatography [7] and studies dealing with unfolded
matrices from multiway data [8], among others [9]. In such cases,
the response variables are by their nature highly correlated to
each other, leading to ill-conditioned X matrices. Thus, MLR
cannot be used in such cases, unless a careful variable selection is
carried out. To avoid the problem of ill-conditioned matrices,
etrics 2010; 24: 320–332 Copyright � 2010 J
projection methods such as PCR (Principal Component
Regression) or PLS (Partial Least Squares) are good alternatives
[10]. The central idea of both methods is to approximate X by a
few components and regress the dependent variables against
these components. The two methods differ essentially in the way
the components are obtained.
Among the multivariate calibration methods, PLS is the most

popular in chemistry. This is a multivariate modeling method
derived around 1975 from Herman Wold’s basic concepts in
the field of econometrics. It consists of calculating principal
components as well as canonical correlations by means of an
iterative sequence of simple ordinary least squares (OLS)
ohn Wiley & Sons, Ltd.
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regression. The chemometric version of PLS regression was
originally developed by Svante Wold in 1983 as a two-block
algorithm, consisting of a sequence of simple, partial models
fitted by least-squares [10].
The components in PLS regression are defined in a way to keep

the compromise between fitting X and predicting Y. In the
simplest case of a single property, the Y matrix is reduced to a
vector y and the method is designated as PLS1. In this case, each
component which relates X and y is obtained by taking into
account the information contained in y by maximizing the
covariance between the X scores (t) and y, such that Xw¼ t and
w ¼ Xty

Xtyk k [10–13]. Due to its ability in handling strongly collinear

(correlated), noisy and numerous X-variables, the PLS method
allows investigation of more complex problems than ever before
[14]. No a priori assumptions are made about the model’s
structure, but estimates of reliability may be made using the
‘jack-knife’ or cross-validation methods. PLS modeling has
become an important tool in many diverse scientific fields, e.g.
psychology [15], economics [16], chemistry [17], food science
[18], medicine and the pharmaceutical sciences [19,20], among
others.
For the large data sets used nowadays, computational time is a

factor that cannot be neglected [21], especially in cross-validation
and variable selection steps, where the PLS algorithm is run
several times [22]. Therefore, a fast PLS algorithm is required for
such cases, since the computational time can be radically
reduced during model building. Several variants of PLS
algorithms were developed in recent years in an attempt to
resolve this problem. Among the most used algorithms are
NIPALS [11,23], modified NIPALS [24], Kernel [24,25], SIMPLS [26]
and bidiagonal PLS [21,27].
The purpose of this work is to compare these five PLS

algorithms available in the literature with respect to their
computational time and the precision observed in the
leave-one-out cross-validation error. Matrices of different sizes
were tested aiming to find out which algorithm would be the
most appropriate for each situation. In these tests only PLS1
(one dependent variable) was considered.
2. NOTATION

Scalars are defined as italic lower case characters (a, b, c),
vectors are in bold lower case characters (a, b, c) and matrices
as bold upper case characters (A, B, C). Matrix elements are
represented by corresponding italic lower case characters with
row and column index subscripts (xij is an element of X). In
some cases, matrices will be written explicitly as X (I� J) to
emphasize their dimensions (I rows and J columns). The identity
matrices are represented as I with their proper dimensions
indicated.
Superscripts t and �1 represent transpose and inverse

operations, respectively.
3

3. ALGORITHMS

Five algorithms were tested in order to evaluate their
computational time and precision in the leave-one-out cross-
validation error. It is assumed that the matrices are adequately
pretreated. These algorithms are described in the following
text.
J. Chemometrics 2010; 24: 320–332 Copyright � 2010 John Wiley & S
3.1. The classical NIPALS algorithm

The first algorithm used in PLS regression was NIPALS (nonlinear
iterative partial least squares), presented in detail elsewhere
[11,23]. It can be summarized as follows:
(1) C
ons,
all the X matrix and y vector X0 and y0, respectively;

(2) C
ompute the quantities w (PLS weights for X), t (PLS scores

for X), q (PLS loadings for y) and p (PLS loadings for X):

waþ1 ¼ Xt
aya

waþ1 ¼
waþ1

waþ1k k
taþ1 ¼ Xawaþ1

paþ1 ¼
Xt
ataþ1

ttaþ1taþ1

qaþ1 ¼
ytataþ1

ttaþ1taþ1
(3) D
eflate X and y by subtracting the computed latent vectors
from them:

Xaþ1 ¼ Xa � taþ1p
t
aþ1

yaþ1 ¼ ya � taþ1qaþ1
(4) G
o to step (2) to compute the next latent vector, until
reaching A latent vectors (a ¼ A)
(5) S
tore w, t, p and q in W, T, P, and q respectively.

(6) C
alculate the final regression coefficients: b ¼ WtðPWtÞ�1q

[28], where W (J�A) and P (J�A) are matrices whose
columns are the vectors w and p, respectively.

3.2. Modified NIPALS algorithm (NIPALSy)

Dayal and Macgregor [24] have shown that only one of either the
X or the Y matrix needs to be deflated. Since only the (I� 1) y
vector is deflated after each latent vector computation, the speed
of the NIPALS algorithm is improved.

3.3. Kernel algorithm

The kernel algorithm presented by Lindgren et al. [25] was
developed for matrices with a large number of objects and
relatively few predictor variables. A complete PLS solution can be
obtained by handling the condensed kernel matrix XtyytX,
usually computed using the cross product of Xty, that is
(Xty)(Xty)t. This procedure avoids the need to deflate the kernel
matrix, and the two covariance matrices, XtX and Xty, are of a
considerably smaller size than the original matrices X and y.
The Kernel algorithm is given below:
(1) C
ompute the covariance matrices XtX and Xty, and the kernel
matrix XtyytX.
(2) T
he PLS weight vector wa is computed as the eigenvector
corresponding to the largest eigenvalue of (XtyytX)a.
(3) T
he PLS loading vectors pa and qa are computed as

pt
a ¼

wt
aðXtXÞa

wt
aðXtXÞawa

qa ¼
wt

aðXtyÞa
wt

aðXtXÞawa
Ltd. www.interscience.wiley.com/journal/cem
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(4) A
ww
fter each latent vector computation, the covariancematrices
XtX and Xty can be updated as

ðXtXÞaþ1 ¼ ðI�wap
t
aÞ

tðXtXÞaðI�wap
t
aÞ

ðXtyÞaþ1 ¼ ðI�wap
t
aÞ

tðXtyÞa

(5) C
alculate the regression vector as in the NIPALS algorithm.

Based on the fact that only the deflation of y in Xty is required,
Dayal and MacGregor [24] proposed a modification that
improved the original kernel algorithm and that is the version
tested in this work.

3.4. SIMPLS algorithm

The SIMPLS algorithm, proposed by De Jong [26], derives the PLS
factors directly as linear combinations of the original (centered) X
variables. One advantage of this method is that it is not necessary
to deflate X or y, which may result in faster computation and less
memory requirements.
When applied to a single-dependent variable y, the results

obtained by the SIMPLS algorithm turn out to be essentially the
same as those obtained by the NIPALS algorithm. The SIMPLS
algorithm for PLS1 can be summarized as follows:
(1) C
ompute s as

s ¼ Xty
(2) C
ompute the quantities r (PLS weights for X), t (PLS scores for
X), q (PLS loading for y) and p (PLS loadings for X) as follows:

ra ¼ s

ta ¼ Xra

ta ¼
ta
tak k

ra ¼
ra
rak k

pa ¼ Xtta

qa ¼ ytta
(3) S
tore r, t, q and p in R, T, q and P, respectively.

(4) P
roject s on a subspace orthogonal to Pa

s ¼ s� P PtPð Þ�1
Pts
(5) G
o to step (2) to compute the next latent vector until reaching
A latent vectors
(6) C
alculate the regression vector as

b ¼ Rq

3.5. The bidiagonalization algorithm (PLSBi)

Manne [27] has shown that PLS1 is equivalent to an algorithm
developed by Golub and Kahan [2] for matrix bidiagonalization.
Matrix bidiagonalization is a useful decomposition often
employed as a fast initialization in algorithms for singular value
decomposition [1].
This method considers that anymatrix X(I� J) can bewritten as

X¼URVt , where U(I� J) and V(I� J) are matrices with ortho-
normal columns, i.e. they satisfy UtU ¼ VtV ¼ I, and R(J� J) is a
bidiagonal matrix.
w.interscience.wiley.com/journal/cem Copyright � 2010 John
Several papers in the literature describe the relation between
PLS1 and bidiagonal decomposition [27,29–32]. The PLSBi
algorithm can be summarized as follows [29,31]:
(1) In
Wi
itialize the algorithm for the first component,
v1 ¼ Xty= Xtyk k ; a1u1 ¼ Xv1
(2) C
ompute the following values for a¼ 2, ..., A latent variables

2:1: ga�1va ¼ Xtua�1 � aa�1va�1

2:2: aaua ¼ Xva � ga�1ua�1

with

VA ¼ ðv1; . . . ; vAÞ;UA ¼ ðu1; . . . ;uAÞ and

a1 g1
a2 g2

0BB
1CC
RA ¼ . .
. . .

.

a
A�1

a
A�1

a
A

BBB@ CCCA

It can be proved that XVA ¼ UARA and, therefore, RA ¼ Ut

AXVA.
Once thematricesU, V and R are computedwith A components

truncated in R, one can estimate the Moore–Penrose pseudo-
inverse of X and solve the least squares problem as

y ¼ Xb ! y ¼ UARAV
t
Ab ! b ¼ VAR

�1
A Ut

Ay
4. EXPERIMENTAL

This section is divided into twomain parts: the first one deals with
simulated data sets especially designed to cover a wide range of
data sizes, with the aid of factorial and Latin square designs and
in the second, real data sets of different sizes and nature were
investigated.
For the sake of clarity, the columns of Xmatrices are referred to

as variables and the variables studied in the experimental designs
are designated as factors.

4.1. Simulated data sets

4.1.1. Factorial designs

Two full factorial designs [33,34], 23, with triplicate in the central
pointwereproposed to investigate two sizes ofdata sets: small (SX)
and large (LX)Xmatrices.A totalof 11experimentswereperformed
for each design, eight at the factorial levels and three at the central
point level. Each PLS algorithm was run for both designs and the
experiments at the central point were performed for error
estimation. The predictor (X) and dependent (y) variables were
generated using a pseudo-random number generator. The
response investigated in the experimental design was the running
time of the algorithms during leave-one-out cross-validations and
designated from here on as time. Three factors were investigated:
the number of rows, R, and the number of columns, C, from X, and
the number of PLS latent variables, nLV. Table I summarizes the
variables and the explored domain. The matrix dimensions are
described by levels of row and column factors. All data were mean
centered as a standard preprocessing procedure.
Assuming that there is a functional relation between the

experimental variables and the observed running time in the
ley & Sons, Ltd. J. Chemometrics 2010; 24: 320–332



Table II. Levels studied for each factor in the Latin square
design

Levels

R C nLV

50 200 3
100 500 5
200 1000 10
500 5000 15
1000 10000 20

R: number of rows; C: number of columns; and nLV: number of
latent variables.

Table I. Factors, coded levels and investigated domain for the 23 full factorial designs

Factors SX levels LX levels

�1 0 1 �1 0 1

Rows (R) 20 60 100 100 550 1000
Columns (C) 50 275 500 500 2750 5000
Latent variables (nLV) 8 12 16 10 15 20

Performance of five PLS algorithms
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described domain, the following response surface model with
linear and interaction terms was determined.

time ¼ b0 þ b1Rþ b2Cbþ b3nLVþ b12R� C þ b13R� nLV

þ b23C � nLVþ e (1)

The estimated b̂0 is the average of all the running time values
of the design. The main and interaction effects are the estimated
model parameters multiplied by 2.The effects can also be
calculated by the following equations:

Mean ¼

Pn
i¼1

timei

n
(2)

ef ¼

Pn=2
i¼1

timeiðþÞ �
Pn=2
i¼1

timeið�Þ

n=2
(3)

where n is the number of assays and timei is an individual
observation given by the PLS run time during leave-one-out
cross-validation.
Equation (2) describes the mean effect of all observations,

while Equation (3) stands for the effects for factors and
interactions using the difference between the mean of
observations in the high level (timei(þ)) and the mean of
observations in the low level (timei(-)).
In this work, the standard errors for the effects were obtained

by the mean square residual (MS residual), according to Equation
(4), because the pure error presented a very low value due to the
high precision of replicates.

MS residual ¼

Pm
i¼1

Pr
j¼1

ðtimeij � tibmeiÞ2

n� q
(4)

In this equation, m is the total level number (experimental
design points); r is the total replicate number; n - q is the number
of degrees of freedom of MS residual; n is the number of assays,
q is the number of calculated parameters (coefficients or effects)
and tibme is the estimated running time of the model. The error
due to the factorial design was obtained as described in
Equation (5).

Err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS residual

n

r
ð5Þ
J. Chemometrics 2010; 24: 320–332 Copyright � 2010 John Wiley & S
4.1.2. Latin square designs

Latin square designs are adequate when the factors of interest
have more than two levels and it is previously known that there
are no (or only negligible) interactions between them. The aim is
to estimate the main effects by investigating several levels for
each factor.
A Latin square of order n is an n� n array in which each cell

contains a set of n symbols, in such a way that each symbol occurs
only once in each row and once in each column.
In this work, a 5� 5 Latin square design with two replications

was used to investigate the influence of several levels of variables
over the run time for the five PLS algorithms. Five levels for each
factor (number of rows, columns and nLV) were studied and a
total of 50 experiments were carried out for each PLS algorithm
(Table II). All data weremean centered as standard preprocessing.
Table II shows the large number of rows, columns and latent

variables investigated. In this study sample dominant and
variable dominant matrices were considered, covering a wide
number of possibilities that could be found in the real world.
The statistical evaluation was performed using the analysis

of variance (ANOVA) as well others described in the literature
[33,34].

4.2. Real data sets

Six data sets from real applications were explored. They were
obtained from different sources, i.e. Near-infrared (NIR) spec-
troscopy, Raman spectroscopy, fluorescence spectroscopy, gas
chromatography (GC), voltammetry and finally, one UV-like
spectra data set simulated using a Gaussian distribution
ons, Ltd. www.interscience.wiley.com/journal/cem
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generator. All data sets were investigated using three levels of
latent variables (nLV¼ 3, 5 and 10) for each algorithm.
NIR data set: This data set was measured at the Southwest

Research Institute (SWRI) in a project sponsored by the US Army.
It is formed by 231 rows and 401 columns, as acquired from the
Eigenvector Research homepage at http://www.eigenvector.com.
Freeze—the freezing temperature of the fuel (8C) is the modeled
physical property.
Raman data set: This data set is available at http://www.

models.kvl.dk/research/data/ as it was presented previously by
Dyrby et al. [35]. It consists of Raman scattering for 120 samples
and 3401 wavenumbers in the range of 200–3600 cm�1 (interval,
1 cm�1). The dependent variable refers to the relative amount of
active substance in Escitalopram1 tablets in %w/w units.
Fluorescence data set: This data set was designed by Bro et al.

[36] for the study of several topics in fluorescence spectroscopy
and can be found at http://www.models.kvl.dk/research/data/.
The dependent variable in this case is the hydroquinone
concentration. An unfolding was performed prior to PLS
regression yielding a matrix with 405 rows and 2548 columns.
Voltammetry data set: This data set was obtained from Teófilo

et al. [37] and consists of 62 baseline corrected voltamograms.
The predictors (variables) are the oxidation current frommixtures
of guaiacol and chloroguaiacol with potential varying from 0.5
to 1.2mV (353 variables) while the analyte investigated was
guaiacol.
UV-like data set: Spectra with Gaussian distribution from four

different analytes were used to generate 1000 mixtures with
concentrations given by pseudo-random numbers. The matrix
used in this case was formed by 1000 rows and 150 columns.
Chromatogram data set: This data set was presented by Ribeiro

et al. [7] and contains the pretreated chromatograms of 62
Brazilian Arabica roasted coffee samples with retention times
varying from 1.8 to 19 s by 0.00085 s steps (20 640 variables).
The dependent variable was the sensory attribute flavor of the
roasted coffee samples.
All calculations using PLS algorithms were carried out on

MATLAB 7.0 (MathWorks, Natick, USA) in double precision,
installed on a PC with windows XP operating system, 1.86 GHz
Intel core 2 duo processor, 2 GB RAM memory. The experimental
design calculations were carried out using Excel spreadsheets
according to Teófilo and Ferreira [33].
The precision of the algorithms, regarding the cross-validation

error, was defined by the difference between the values of root
mean square error of cross-validation (RMSECV) obtained from
each assay, according to Equation (6),
The comparison of cross-validation results between algorithms

i and j was quantified by

diffij ¼ RMSECVi � RMSECVj
�� �� (6)

where RMSECV is given by Equation (7)

RMSECVk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1 ðyi � ŷiÞ2

I

s
(7)

In Equation (7), yi is the measured response of the ith sample, ŷi
is the predicted response from calibration equation obtained for
the data without the ith sample and I is the number of samples in
the calibration set. Cross-validation was performed using a
lab-built algorithm written for MATLB 7.0.
www.interscience.wiley.com/journal/cem Copyright � 2010 John
5. RESULTS AND DISCUSSION

5.1. Simulated data sets

5.1.1. Factorial design

The effects obtained for the five algorithms considering both SX
and LX data sets from full factorial design models are shown in
Table III.
According to Equation (3), the effect is the difference between

the mean running times obtained for the levels of each factor
and, thus, its value must be related to run time. The effect
indicates the influence of a factor or interaction between two
factors over the run time. The error (Err) is obtained from
Equation (5) and t is the ratio Effect/Err, the parameter of Student
distribution. The t value with specified degrees of freedom and
significance level, a, obtained from t distribution available in
statistical Tables [34] or from the p value [33,34], is used to judge
whether the effect is statistically significant.
As the calculations were performed under the same conditions

for different algorithms, it is possible to compare the effects and
responses between the algorithms and between the data sets.
Thus, observing the SX data set from Table III, it can be noted that
both factors (R and C) are significant. However, C is approximately
62% ((Effect C� 100)/Effect R) more important than R. The
interaction R� C was also important in all calculations, being
even more important than nLV which had only a minor
importance.
When analyzing the results for the LX data set in Table III, it

can be seen that only the main factors R and C are significant.
Unlike SX, the factor R is approximately 86% ((Effect R� 100)/
Effect C) more important than C. This inversion with respect to R
and C significance is related to the cross-validation procedure.
The increase in the number of rows increases the number of
steps in leave-one-out cross-validation and, consequently,
the run time. Unlike for SX, nLV is not significant for LX within
the studied levels. In this case, the effect of nLV over run time
could be minimized by its smaller range relative to R and C.
Otherwise, the interaction R� C is very important in all
calculations.
After discussing the significance of each factor and their

interactions for the models, it is necessary to address the
difference in the running times for the various algorithms. Since
the same data set was tested by various algorithms, the paired
t-test is the choice to test if running time for algorithms i and j are
statistically different.
The null hypothesis in this case is that the mean difference

between running time for algorithms i and j is zero, which means
that there is no statistical evidence that the computation times
are different for the two algorithms. The alternative hypothesis is
that the running times for the two algorithms are different. For
the paired t-test, the difference between the running times is
calculated for each pair i, j and the mean and standard deviation
of these differences are calculated. Dividing the mean by the
standard deviation of the mean yields a t value that is
t-distributed with n� 1 degrees of freedom. The null hypothesis
was rejected at a significance level of 0.05 when t calculated >t
critical or p� 0.050, where the p-value is the smallest level of
significance that would lead to rejection of the null hypothesis H0

with the given data [34].
Table IV presents the results obtained. Note that for the SX data

set, the algorithm SIMPLS was statistically equal to Kernel and
for the LX data set, the pairs PLSBi-SIMPLS and SIMPLS-Kernel
Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 320–332
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Table IV. Comparison for run time differences between algorithms using paired t-test for SX and LX data sets

SX

PLSBi SIMPLS PLSBi Nipalsy PLSBi Nipals PLSBi Kernel SIMPLS Nipalsy

Mean 0.21 0.23 0.21 0.27 0.21 0.47 0.21 0.24 0.23 0.27
Variance 0.05 0.05 0.05 0.09 0.05 0.37 0.05 0.07 0.05 0.09
Correlation 1.00 1.00 0.99 1.00 1.00
t0 4.91 2.65 2.24 2.34 1.87
p 0.0003 0.012 0.025 0.021 0.045

SIMPLS Nipals SIMPLS Kernel Nipalsy Nipals Nipalsy Kernel Nipals Kernel

Mean 0.23 0.47 0.23 0.24 0.27 0.47 0.27 0.24 0.47 0.24
Variance 0.05 0.37 0.05 0.07 0.09 0.37 0.09 0.07 0.37 0.07
Correlation 0.99 1.00 0.99 1.00 0.99
t0 2.09 0.77 2.12 2.70 2.21
p 0.031 0.230 0.030 0.011 0.026

LX

PLSBi SIMPLS PLSBi Nipalsy PLSBi Nipals PLSBi Kernel SIMPLS Nipalsy

Mean 200.48 206.14 200.48 284.95 200.48 584.93 200.48 210.33 206.14 284.95
Variance� 105 1.07 1.14 1.07 2.28 1.07 9.39 1.07 1.19 1.14 2.28
Correlation 1.00 1.00 1.00 1.00 1.00
t0 1.79 1.86 1.98 1.88 1.85
p 0.052 0.047 0.038 0.045 0.047

SIMPLS Nipals SIMPLS Kernel Nipalsy Nipals Nipalsy Kernel Nipals Kernel

Mean 206.14 584.93 206.14 210.33 284.95 584.93 284.95 210.33 584.93 210.33
Variance� 105 1.14 9.39 1.14 1.19 2.28 9.39 2.28 1.19 9.39 1.19
Correlation 1.00 1.00 1.00 1.00 1.00
t0 1.98 �1.50 2.02 1.85 1.99
p 0.038 0.082 0.035 0.047 0.038

Degrees of freedom: 10; significance level: 0.05; and t-critical: 1.81.
The bold and italic numbers indicate the null hypothesis was accepted.

J. P. A. Martins, R. F. Teófilo and M. M. C. Ferreira
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were statistically equal. In the other comparisons the times were
statistically different indicating the necessity to evaluate which
algorithm should be used.
The performance of the five algorithms given in terms of run

time can be observed in Figure 1(A) where the effects give a
measure of the run time. Note that PLSBi, SIMPLS and Kernel
show equivalent performance; NIPALSy is slightly worse and
Figure 1. Effects obtained from the full factorial

www.interscience.wiley.com/journal/cem Copyright � 2010 John
NIPALS has the poorest performance. It is clear that by using the
deflation only in y, the NIPALS algorithm is significantly improved
with respect to the run time.
The effects for the algorithms are shown in Figure 1(B), where a

similar trend to that for SX can be observed.
Table V shows the relative precision, regarding the cross-

validation results, calculated as described in Equation (6) for the
design models for SX (A) and LX (B) data sets.

Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 320–332
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Table VI. ANOVA results using Latin square design for the five
algorithms

SS df MS F

PLSBi
R 1824949 4 456237.3 7.48
C 1250554 4 312638.5 5.13
nLV 866337 4 216584.3 3.55
Residual 2255381 37 60956.3

SIMPLS
R 2001938 4 500484.6 7.74
C 1336032 4 334008 5.16
nLV 919261 4 229815.1 3.55
Residual 2393615 37 64692.3

Kernel
R 1982460 4 495615 7.43
C 1375964 4 343991 5.15
nLV 947643 4 236910.8 3.55
Residual 2469374 37 66739.8

NIPALSy
R 3618584 4 904646 7.08
C 2550944 4 637735.9 4.99
nLV 1796580 4 449145 3.52
Residual 4725097 37 127705.3

NIPALS
R 14190920 4 3547730 7.09
C 9703320 4 2425830 4.84
nLV 6977808 4 1744452 3.48
Residual 18525600 37 500692

SS: Sums of Squares; df: degrees of freedom; MS: mean square
residual; F: statistics ratio; a: 0.05; R: number of rows; C: number
of columns; and nLV: number of latent variables.
Bold and italic values are statistically significant.

Figure 2. Mean square values from Latin square design.

J. P. A. Martins, R. F. Teófilo and M. M. C. Ferreira
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algorithms tested using the SX and LX data sets. Significant
differences between the algorithms are mostly observed at large
nLV values. The SIMPLS algorithm showed results noticeably
different from those of other algorithms for some specific matrix
dimensions and large values of nLV. Other results indicate
negligible differences among the algorithms, i.e. equal results for
RMSECV.

5.1.2. Latin square design

Table VI shows the ANOVA results for the five algorithms. The
sums of squares (SS) in Table VI are related to the variance in each
factor. The higher the variance, the higher is the influence of a
factor on the run time. The mean square (MS) is given by the ratio
of sums of squares and the number of degrees of freedom (df )
and better explains the results. F is the parameter of F-distribution
for variance tests, and is obtained as the ratio of MS and MS
Residual. Using the F-value for specific degrees of freedom and
the significance level, a, it is possible to determine whether SS is
statistically significant.
By analyzing the values of SS and MS from Table VI, the

similarities among the PLSBi, SIMPLS and Kernel algorithms, and
the high values for NIPALSy and especially NIPALS, can be
www.interscience.wiley.com/journal/cem Copyright � 2010 John
observed as before. In this case, the number of rows is
approximately 68%more important than the number of columns,
and nLV is slightly less important when compared to R and C.
When using MS residual to represent the run time, it is possible

to observe in Figure 2, the behavior of the algorithms and the
influence of the factors R, C and nLV. The large run time for the
NIPALS algorithm as well as the better performance of PLSBi,
SIMPLS and Kernel can also be seen.
The plot for themain effects is shown in Figure 3, indicating the

influence of the level of each factor on the run time. An
exponential growth is observed in all cases due to the increase of
the number of rows and columns. However, a drop in the run time
is observed for the maximum nLV studied. This trend is due to the
absence of investigation for the maximum level of nLV with the
maximum level of R and C. Themaximum level of nLV was studied
only for the lower levels of R and C. As the nLV has little influence
on the run time, the result obtained for themaximum level of nLV,
as noted in the Figure 3, is not real. The real influence of nLV over
time can be observed in Figure 4 for a fixed dimension of
matrices, where a linear increase is observed.
The differences between run time algorithms for results using

Latin square were calculated and statistically evaluated using the
paired t-test as before.
Table VII presents the results obtained. Note that the algorithm

SIMPLS was statistically equal to Kernel, in accordance to results
obtained previously. In other comparisons, the times were
statistically different indicating the necessity to evaluate which
algorithm should be used.
Table VIII shows the precision analysis, regarding the cross-

validation results, for the Latin square design. Three assays
indicate a large difference in the RMSECV values. Observing these
values it can be concluded that the number of latent variables is
critical for matrices where the number of samples is approxi-
mately 2% (or less) of the number of variables. With a large
number of latent variables (>10), great differences among the
results obtained with PLS algorithms, mainly for the SIMPLS
algorithm, can be observed.
However, the RMSECV differences for the other assays are very

small (<10�9–0), indicating that the algorithms are quite similar
regarding the precision in most of the cases.
Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 320–332



Figure 3. Main effect plots for Latin square design. PLSBi, A1, B1, C1; SIMPLS, A2, B2, C2; Kernel, A3, B3, C3; NIPALSy, A4, B4, C4; and NIPALS, A5, B5, C5.

Figure 4. Run time versus nVL for a matrix 1000� 10 000.

J. Chemometrics 2010; 24: 320–332 Copyright � 2010 John Wiley & S
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5.2. Real data sets

The spectra, voltammograms and chromatograms are shown in
Figure 5. Note that each data set shows a different behavior and
structure. These data were studied varying the number of latent
variables for each algorithm applied.
Table IX contains the run time obtained for each real data set

and algorithm. Note that the run time increases linearly with nLV
for all algorithms and data sets. The best performance was
obtained for the PLSBi algorithm and the worst performance was
obtained for NIPALS in most of the cases. The Kernel algorithm
was slightly better than the SIMPLS algorithm for all assays.
It was observed for most of the cases that the data type did

not affect the behavior of the run time differences among the
algorithms with respect to the random data. However, the UV-like
data set presented an unexpected result because SIMPLS had
the poorest performance (Table IX). This abnormal behavior can
be justified by the matrix dimensions used in this data set. The
number of rows (1000) is much higher than the number of
columns (150). Thus, SIMPLS is not recommended to be used in
matrices with such dimensions.
ons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 5. Data set tests used. (A) Near-infrared spectra (NIR); (B) Raman spectra (Raman); (C) unfolded fluorescence spectra (Fluor); (D) voltammograms

(Volt); (E) UV-like data set (UV-like); and (F) gas chromatography (GC).

Table IX. Time (in seconds) of each algorithm varying the data set type, dimension and number of latent variables

Data set Dimension nLVa PLSBi SIMPLS Kernel NIPALSy NIPALS

NIR 231� 401 3 1.16 1.24 1.17 1.27 2.33
5 1.39 1.48 1.41 1.56 3.17
10 1.86 1.94 1.91 2.23 5.25

Raman 120� 3401 3 3.30 3.61 3.58 3.98 6.78
5 4.17 4.64 4.53 5.34 9.72
10 6.59 7.20 7.66 9.03 17.49

Fluor 405� 2584 3 27.98 29.58 29.50 32.38 55.77
5 33.52 35.17 35.14 40.80 77.38
10 47.88 49.81 50.63 63.33 132.88

Volt 62� 353 3 0.11 0.11 0.11 0.11 0.19
5 0.14 0.14 0.13 0.14 0.28
10 0.20 0.23 0.22 0.25 0.50

UV-like 1000� 150 3 8.55 27.38 8.39 9.36 17.27
5 9.88 28.25 9.41 10.92 23.38
10 13.41 30.72 12.38 15.63 38.84

GC 58� 20640 3 67.24 73.95 67.36 78.17 110.06
5 74.72 78.89 78.92 91.09 144.00
10 106.63 113.23 118.39 144.00 249.64

a Number of latent variables.

Performance of five PLS algorithms
The RMSECV difference (relative cross-validation error precision)
for the six real data sets lies between 1.45� 10�5 and 7.37� 10�18,
indicating that there are no significant differences among the
algorithms with respect to the cross-validation error precision.
3

6. CONCLUSIONS

The choice of the PLS algorithm for multivariate regression is an
important issue when dealing with large data sets, due to
J. Chemometrics 2010; 24: 320–332 Copyright � 2010 John Wiley & S
significant differences in running time of algorithms presented in
the literature and, in some cases, because of important
differences in RMSECV values.
For the matrices analyzed in this work, it is shown that

the matrix dimension is the major factor responsible for
computational time, while the number of latent variables
has a lesser influence. In addition, in most of the cases the
number of rows has greater influence than the number of
columns for all algorithms. The number of latent variables
exhibits a linear influence with increasing time, but it is less
ons, Ltd. www.interscience.wiley.com/journal/cem
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important than the influence of the numbers of rows and
columns.
Among the five algorithms analyzed in this work, PLSBi is the

best with respect to computational time followed by Kernel and
SIMPLS and the differences in speed although relatively small are
statistically different. Comparing NIPALS to NIPALSy, NIPALSy was
statistically faster because only y values need to be deflated. The
values of RMSECV for all the algorithms tested were essentially
the same in most of the cases. However, pronounced differences
between RMSECV values were observed in some specific assays
(with a high number of latent variables), especially for the SIMPLS
algorithm. Further investigation is required for a theoretical
explanation of such behavior.
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