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Four Quantitative Structure–Activity Relationship (QSAR) models were constructed for a set of 32 and 16
HIV-1 protease inhibitors in the training and external validation sets, respectively, using the biological
activity and molecular descriptors from the literature. Two QSAR models were based on Support Vector
Machines methods (SVM): Support Vector Regression (SVR) and Least-Squares Support Vector Machines
(LS-SVM) models. The other two models were an ordinary Partial Least Squares (PLS) and Ordered Predictors
Selection-based PLS (OPS-PLS). The SVR and LS-SVM models showed to be somewhat better than the PLS
model in external validation and leave-N-out crossvalidation. SVR and LS-SVM were better than OPS-PLS in
external validation, but showed equal performance in leave-N-out crossvalidation. However, despite of their
high predictive ability, the SVM models failed in y-randomization, which did not happen with the PLS and
OPS-PLS models. The OPS-PLS model was the only one that undoubtedly showed satisfactory performance
both in prediction and all validations. The selection of inhibitors by the SVM-based models and variable
selection by the OPS-PLS model were rationalized by means of Hierarchical Cluster Analysis (HCA) and
Principal Component Analysis (PCA). Lagrange multipliers from the SVR and LS-SVM models were explained
for the first time in terms of molecular structures, descriptors, biological activity and principal components.
Some unresolved difficulties in practical usage of SVM in QSAR and QSPR were pointed out. The presented
validation and interpretation of SVR and LS-SVM models is a proposal for future investigations about SVM
applications in QSAR and QSPR, valid for any modeling and validation condition of the final regression
equations.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
Quantitative Structure–Activity Relationships (QSAR) [1] are
mathematical equations for calculation of biological activity from
molecular descriptors (physico-chemical properties or molecular
features). Nowadays, with fast computer programs, large descriptor
sets are commonly generated, which frequently introduce significant
descriptor intercorrelations. Latent variable methods like Principal
Component Regression (PCR) and Partial Least Squares (PLS) regres-
sion [1–5] have shown to be adequate for solving this problem.
Besides, PLS allows limited modeling of non-linear relations by using
more latent variables or descriptor transforms.

Support Vector Machines method (SVM) is a relatively new
alternative to the existing linear and non-linear multivariate calibra-
tion approaches in chemometrics [6,7]. SVM was originally proposed
by Vapnik [8,9] within the area of statistical learning theory and
structural risk minimization. SVM is able to treat both, linear and non-
linear data sets and control or even reduce overfitting. The non-
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linearity is achieved by applying the kernel trick, i.e., every dot
product in linear SVM is replaced by a non-linear kernel which
satisfies the Mercer's theorem [9]. Compared to Artificial Neural
Networks (ANN), SVM always finds a global, usually unique solution.
SVM-based regressions can solve ill-posed problems leading to
models that are often unique and exhibit good prediction power.

Least-Squares Support Vector Machines method (LS-SVM) [10,11]
appears as a newer variant of the SVM formulation in which equality
instead of inequality constraints are applied and a sum squared error
cost function is used. LS-SVM is computationally more efficient and
simpler than its predecessor Support Vector Regression method (SVR).
Although LS-SVM suffers from the lack of sparsity, which can
be achieved only using pruning techniques applied to Lagrange
multipliers [11], and is less robust to the presence of outliers and non-
Gaussian noise, it outperforms SVR in many cases, probably because its
optimization procedure is more accurate (less parameters to optimize).

SVR methods have appeared in QSAR and QSPR (Quantitative
Structure–Property Relationship) in 2002 [12–14], and LS-SVM
methods only in 2005 [15,16]. SVM-based methods are still modestly
used in QSAR and QSPR, accounting to more than two hundred
research articles, majority of which (95%) prefers SVR. Nowadays,
several numerical methods in QSAR and QSPR compete in proposing
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regression models for prediction of biological activities, chemical or
physical properties by selecting a few molecular descriptors among
hundreds or thousands of measured or calculated variables. This
increasing complexity of regression models, possibility for chance
[17] and non-causal [18] correlations encoded in final models, and
danger of models' non-interpretability [19], impose rather rigorous
criteria for model validations [20–25], regardless of the modeling
methodology applied. Leave-N-out crossvalidation (LNO) [22,26] and
y-randomization [22,27] are among the most rigorous validation pro-
cedures. Up to our knowledge, there are only a few articles including
LNO or y-randomization of SVM models in the QSAR literature.

All these facts motivated the authors of this work to compare SVR
and LS-SVM approaches with PLS when applied to a particular QSAR
data set with linear structure, but unlike similar comparisons in the
literature, the models are rigorously validated. The performance of
SVR and LS-SVM methods is analyzed parallel to that of an ordinary
PLS and Ordered Predictors Selection-based PLS (OPS-PLS) [28], and is
rationalized by means of Principal Component (PCA) and Hierarchical
Cluster (HCA) Analyses [1,3,5]. The data set is from a QSAR study
[29,30] on peptidic inhibitors of HIV-1 integrase (Fig. 1), with in vitro
biological activity expressed as the negative logarithm of molar
concentration IC50 (inhibitory concentration for 50% viral inhibition).
Fourteen a priori molecular descriptors [29,31,32] of various natures
(compositional, electronic, steric, hydrophobic, topological and
mixed), were calculated. In this work, a new HCA-based data split,
has been applied. The data set has been shown useful for validation of
various chemometric approaches [28,33]. It should be stressed that
the purpose of this work is not to propose new, more potent HIV-1
protease inhibitors, but to offer methodologies for rigorous validation
and chemical interpretation of SVM-based models as it is the usual
practice for conventional regression models in QSAR and QSPR.

2. Methods

2.1. The data set

TheQSARdata set [29,30]was in the formof amatrix 48×14,where
48 peptidic inhibitors with four substituents at the main peptide-like
chain (Fig. 1) were described by 14 molecular descriptors (named
originally as X1, X2,…, X14), resulting from a variable selection on more
thanfifty a priori descriptors [29]. The anti-HIV activitywas in the form
pIC50=− logIC50. Original IC50 was determined and rationalized via
inhibitors docking toHIV-1protease byHollowayet al. [34]. The former
data split [29] consisted of compounds 1–32 in the training and 33–48
in the external validation set, according toHollowayet al. [34]. Detailed
inspection of this split by means of HCA for the complete data set and
the corresponding QSAR model (published previously [29]) has
revealed a more consistent split based on inhibitor clustering. There-
fore, inhibitors selected for the newexternal validation setwere:1, 3, 8,
12–14, 22, 24, 26, 29, 32,35,40, 41, 44 and 47.When carefully observing
the molecular structures in Fig. 1, the reader can find out that this new
external validation set is a better representative of the training set.

2.2. The SVR method

Themain idea of SVR [35,36] is tofind the “flattest” (i.e. less complex)
linear function that approximates the given data with ε precision in a
kernel-induced feature space [36]. This is reachedusing the ε-insensitive
loss function, which penalizes errors greater that ε. The trade between
the flatness of the estimate and the amount up to which deviations
greater than ε are tolerated, is determined by the regularization con-
stant C≥0. This setting is transformed into a constrained optimization
problem, in which the Wolfe dual is computed, resulting in a convex
programming problem. The solution of this problem is sparse: a subset
of the resulting Lagrange multipliers will be nonzero [35–37] and the
associated samples will be support vectors (SV). Only these vectors
contribute to the regression function. In this setting, the regression
vector cannot be given explicitly, only for linear SVR it can be described
as a linear combination of the training patterns. Consequently, the
information regarding the original input variables is vanished in most
cases, and a direct interpretation of the SVRmodel ismore complicated.

2.3. The LS-SVM method

The least squares version of SVM, the LS-SVM method [10,11],
requires the solution of a set of linear equations instead of the long and
computationally hard quadratic programming problem involved by
the standard SVM. LS-SVM solves a constrained optimization problem
[11], where the values of Lagrange multipliers for each sample are
obtained as solutions of a set of linear equations. In this procedure,
sparseness is lost, every data point is a SV, but some points contribute
more than others, as follows from optimality conditions [11]. Some
pruning techniques have been introduced in order to achieve sparsity
[11,38,39]. Besides, the use of a sum of squared errors cost function
might lead to estimates which are less robust, but several variants
have been developed to overcome this drawback, such as the
incorporation of methods from robust statistics [38].

2.4. Software and optimization procedures for the SVR and LS-SVM
models

AGaussian (radial basis function, RBF) kernel was used for both SVR
and LS-SVMmodels. The LS-SVMpruning algorithmwas that of Suykens
et al. [11]. For pruning, 15% of the training objects with the lowest
absolute values of Lagrange multiplier were removed, after which the
model was reconstructed and the pruning was repeated until the
validationperformancedegraded up to 80% of that of the originalmodel.
Optimization of the SVR (C, ε and kernel width σ) and LS-SVM (C and
kernel widthσ) hyperparameters was performed by a grid search based
on leave-one-out crossvalidation. For the SVR model, the ranges of
parameter values used to tune the values of parameters C, ε and σwere
100–1000, 0.05–0.5 and 1–50, respectively. For the LS-SVM model, the
range supply for tuning parameters C and σ2 was exp(2.5)–exp(5) and
exp(3.5)–exp(5.5), respectively. The SVR calculations were performed
byusing the e1071package in R [40]. For the LS-SVMmodel, calculations
employing the Matlab/C toolbox [41] were carried out.

2.5. The PLS model

The ordinary PLS model (denominated as the PLS model) was
constructed with 14 autoscalled molecular descriptors via leave-one-
out crossvalidation, analogously to the published model [29].

2.6. The OPS-PLS model

All data analyses were performed using home-built functions
written for Matlab [42]. The OPS® Toolbox routines, implemented in
Matlab, are registered and are available online [43]. The core of OPS
[28] is to sort the variables from informative vectors (regression
vector, correlation vector, residual vector, variable influence on
projection, net analyte signal, covariance procedures vector, signal-
to-noise ratios, and their combinations) and investigate the PLS
models systematically, to find the most relevant set of interpretable
variables by comparing the crossvalidation parameters of the models.
The OPS procedure using autoscaled descriptors and leave-one-out
crossvalidation resulted in the final model with reduced number of
variables, denominated as the OPS-PLS model.

2.7. Validations of the QSAR models

The final regression models (PLS, OPS-PLS, SVR and LS-SVM) were
validated by leave-N-out crossvalidation and y-randomization on the



Fig. 1. Molecular structures of HIV-1 inhibitors 1–48 and their general structure in the box, consisting of a chain that varies in fragments R1 and R2, and four substituents P1, P2, P1′ and P2′ in four protease pockets S1, S2, S1′ and S2′. Six
unoccupied pockets S3, S4, S5, S3′, S4′ and S5′ are shown also.
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previously randomized training data set, and by external validation,
according to recent recommendations for model validations in QSAR
and QSPR [20–27]. Ten randomizations of the y vector were performed
according to Wold and Eriksson [44], as well as additional 1000
randomizations. The same data randomizations and validation
procedures were carried out by Matlab and Pirouette [45] for all the
four models, with the purpose of consistent comparison.

2.8. Exploratory analysis

PCA and HCA with incremental linkage were applied to the
autoscaled training data set using Pirouette. The analyses were
performed to rationalize inhibitor selections made by the SVR and
LS-SVM and variable selection by OPS-PLS in terms of classes of y,
molecular structures andmolecular features. Exploratory analysis also
aided in the interpretation of the regression models.

3. Results and discussion

3.1. Statistical comparison of the QSAR models

Comparative statistics of the final PLS, OPS-PLS, SVR and LS-SVM
regression models, is presented in Table 1 and Fig. 2. PLS and OPS-PLS
use the same number of latent variables with rather different contents
Table 1
Statistics of PLS, OPS-PLS, SVR and LS-SVM regression models.

Parameter PLS OPS-PLS SVR LS-SVM

No. of inhibitors 32 32 14a 18b

No. of descriptors 14 5 14 14
No. of LV (%Var)c 3 (69.48%) 3 (82.90%) – –

No. of optimized parameters – – 3d 2e

Q2f 0.641 0.759 0.844 0.819
R2f 0.836 0.852 0.935 0.938
Q2

ext
f 0.841 0.818 0.891 0.899

SEVg 0.921 0.754 0.606 0.653
SECg 0.666 0.631 0.417 0.401
SEVext

g 0.612 0.654 0.506 0.487
No. of residuals N10% (training set)h 8 8 0 2
No. of residuals N10% (exter. valid. set)h 3 3 2 2
Average residual (training set)i 6.5 6.4 4.7 4.1
Average residual (exter. valid. set)i 6.3 7.4 4.8 5.1
PLS regression vector:X1: 0.037,X2:−0.120,X3:−0.103,X4:−0.008,X5: 0.036,X6:−0.103,
X7: −0.017, X8: −0.007, X9: 0.503, X10: 0.208, X11: 0.496, X12: 0.097, X13: 0.055, and
X14: −0.016

OPS-PLS regression vector: X3:−0.155, X6:−0.548, X9: 0.976, X10: 0.404, and X13: 0.312
SVR Lagrange multipliers and b: α2=100.00, α10=−25.58, α17=27.55, α18=32.43,

α19=40.56, α20=−37.73, α21=−100.00, α25=−6.39, α34=−2.18, α37=13.04,
α38=−53.65, α42=−3.28, α43=1.95, α45=13.27, and b=1.250

LS-SVM Lagrange multipliers and b: α2=18.97, α5=7.83, α10=−9.02, α11=−6.31,
α16=5.29, α17=9.42, α18=10.07, α19=17.54, α20=−15.85, α21=−21.44, α23=
−9.22, α25=−6.77, α27=8.39, α28=−12.01,α37=6.44, α38=−16.66, α45=5.24,
α46=8.08, and b=−0.773

a Inhibitors used to build the SVR model: 2, 10, 17, 18, 19, 20, 21, 25, 34, 37, 38, 42, 43
and 45.

b Inhibitors used to build the LS-SVMmodel: 2, 5,10,11,16,17,18,19, 20, 21, 23, 25, 27,
28, 37, 38, 45 and 46.

c Number of latent variables and the corresponding percentage of the total variance
(in brackets).

d Optimized parameters of the SVR model: C=100, σ=15 and ε=0.3.
e Optimized parameters of the LS-SVM model: C=44.902 and σ=9.78.
f Correlation coefficients calculated: Q2 — correlation coefficient of crossvalidation,

R2 — correlation coefficient of multiple determination (calibration) and Q2
ext —

correlation coefficient of external validation.
g Standard errors calculated: SEV— standard error of crossvalidation, SEC— standard

error of calibration and SEVext — standard error of external validation.
h Number of inhibitors with absolute values of relative residuals greater than 10%, for

the training and external validation sets.
i Average of absolute values of relative residuals, for the training and external

validation sets, expressed in %.
of the original information (OPS uses 5 from 14 molecular descrip-
tors). The SVM-based models use half of the inhibitor set: SVR selects
14 (44%) and LS-SVM 18 (56%) inhibitors. Values of optimized
parameters C, σ and ε for SVR and LS-SVM are reported in Table 1.

With the new split, the PLS model becomes somewhat weaker in
the training statistics (R2=0.84, Q2=0.64 and SEV=0.92) than the
analogue model for the old split [29], but it improved the external
statistics significantly (SEVext=0.61 instead of 1.12). OPS-PLS is
superior to PLS in the training statistics, with a slight improvement
in prediction, whilst the external predictions are similar for both
models. Considering the basic statistical requirements (R2N0.6 and
Q2N0.5 [20,21,24]), all the quality indices in Table 1 and predictions in
Fig. 2, both PLS and OPS-PLS are good models.

SVR and LS-SVM are very similar in terms of all statistics. This is
probably due to equilibrium between the conditions under which the
models were obtained: 14 inhibitors and 3 optimized parameters
(SVR) against 18 inhibitors and 2 parameters (LS-SVM). SVR and LS-
SVM exhibit improvement with respect to OPS-PLS and especially to
PLS in terms of training and external statistics, which is visible from
Table 1 and Fig. 2. This is a typical situation in the literature, reported
when non-linear SVR or LS-SVM is compared to linear methods
traditionally used in QSAR and QSPR, such as PLS, PCR and MLR
(Multiple Linear Regression).

Robustness of the four regressionmodelswas tested by leave-N-out
crossvalidation (known also as leave-many-out, LMO), where N took
values from 1 to 7 as the regionwithinwhich all the four models were
considered robust (Table 2 and Fig. 3). For satisfactory LNO validation,
Q LNO

2 is greater than 0.5 and stable, with themaximumN still allowing
construction of meaningful models [23], knowing that the maximum
N is problem-dependent [26] and cannot be large for small and
medium data sets [23]. Therefore, the four models can be considered
robust. However, themodels are differentiated in terms of average and
oscillation degree (standard deviation) of Q LNO

2 , well visible in Fig. 3.
LNO gives more reliable comparison among the models than leave-
one-out crossvalidation: PLS is distinguished from the other models,
having the lowest average Q LNO

2 and two times greater oscillation
degree (Table 2). LS-SVM is at the mid-way between OPS-PLS and
SVR. Small differences between average Q LNO

2 (below 0.05), oscilla-
tion degrees and almost coinciding values of Q L2O

2 and Q L6O
2 (Fig. 3)

make the three models statistically indistinguishable. This is clearer
when confidence levels from normal distribution [46] of the dif-
ferences between average values of Q LNO

2 for the models (Table 2) are
calculated.

The essence of y-randomization is to detect and quantify chance
correlations in M runs (randomizations) for K samples in the training
sets with scrambled or randomized vectors y. The basic statistics of
randomization models (Q2

yrand and R2
yrand) should be poor and not in

the range of that for acceptable regression models. Otherwise, each
resulting model may be considered as a chance correlation. The
chance correlation's frequency depends primarily on two statistical
factors [17,27]: it strongly increases with the decrease of K and
moderately with greater M. Chemical factors such as the nature of
compounds and their structural similarity, data quality, distribution
profile of each variable, variable intercorrelations, among others,
modify at a certain extent these statistical dependences. There are two
main issues about y-randomization: how large should be M, and how
exactly the chance correlation degree should be qualified or quantified
that one could characterize a model as having or not having chance
correlation. The simple approach of Wold and Eriksson [44] consisting
of ten randomizations (M=10) for any K, known in QSAR and QSPR
literature as a fast and effective procedure [24,47], was also adopted in
this work. According to our experience, a model possessing real
chance correlations is detected for any number of randomization runs
M≥10, but the question is what criteria are reliable at a certain
number M. Applying additional 1000 randomization, this issue may
be analyzed and discussed in details.



Fig. 2. Experimental against predicted biological activity for A) PLS, B) OPS-PLS, C) SVR and D) LS-SVM regression model. Training and external validation sets are differentiated by
white (□) and solid (■) squares, respectively.
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Results from 10 and 1000 y-randomization validations for the four
models are presented in Table 3 and Fig. 4, and also in Supplementary
data (Figs. S1, S2 and S3, and Table S1). Four approaches to qualify and
quantify chance correlations were applied. To understand their
usefulness, the results for 10 randomizations are analyzed and dis-
cussed first. The qualitative approach of Wold and Eriksson [44] is
based on detecting the randomization runswith Q2

yrand or R2
yrand above
Table 2
Comparative statistics of leave-N-out crossvalidation for PLS, OPS-PLS, SVR and LS-SVM
regression models.

Parametera PLS OPS-PLS SVR LS-SVM

Average Q2
LNO 0.617 0.769 0.845 0.803

Standard deviation (Q2
LNO) 0.038 0.018 0.019 0.020

Confidence levels matrixb

PLS 0.0003 b0.0001 b0.0001
OPS-PLS 0.0037 0.2077
SVR 0.1285

a Statistical parameters are calculated from Q2 from leave-N-out crossvalidation
(Q2

LNO).
b Confidence levels for normal distribution of the differences between average Q2

LNO

values obtained for different models, taking into account respective standard
deviations. Bold values indicate that the models are not distinguishable.

Fig. 3. Leave-N-out crossvalidation (N=1, 2,…, 7) for PLS (■), OPS-PLS (♦), SVR (▼),
and LS-SVM (▲) models. Average QLNO

2 for the models are represented by dashed and
oscillations by solid lines.



Table 3
Comparative statistics of y-randomization for PLS, OPS-PLS, SVR and LS-SVM regression models.

Parametera PLS OPS-PLS SVR LS-SVM

M=10 M=1000 M=10 M=1000 M=10 M=1000 M=10 M=1000

Maximum (Q2
yrand) −0.388 0.367 −0.185 0.320 −0.410 0.280 −0.272 0.330

Maximum (R2yrand) 0.310 0.614 0.189 0.494 0.639 0.826 0.685 0.863
Average (Q2

yrand) −0.594 −0.455 −0.383 −0.306 −1.020 −1.002 −0.784 −0.643
Average (R2yrand) 0.227 0.274 0.108 0.152 0.435 0.471 0.526 0.572
Standard deviation (Q2

yrand) 0.177 0.311 0.147 0.206 0.363 0.616 0.263 0.357
Standard deviation (R2yrand) 0.053 0.092 0.047 0.089 0.118 0.105 0.095 0.083
Minimum model-random. diff. (Q2

yrand)b 5.81 0.88 6.42 2.13 3.45 0.92 4.15 1.37
Minimum model-random. diff. (R2yrand)b 9.92 2.41 14.11 4.04 2.51 1.04 2.66 0.90
Confidence level for min. diff. (Q2

yrand)c b0.0001 0.3788 b0.0001 0.0332 0.0006 0.3576 b0.0001 0.1707
Confidence level for min. diff. (R2yrand)c b0.0001 0.0160 b0.0001 b0.0001 0.0121 0.2983 0.0078 0.3681
Randomizations %, conf. level N0.0001 (Q2

yrand)d 0 68% 0 10% 10% 83% 0 43%
Randomizations %, conf. level N0.0001 (R2yrand)d 0 2% 0 0 40% 29% 40% 30%
y-Randomization intercept (ryrand vs. Q2

yrand)e −0.8(1) −0.52(2) −0.53(8) −0.37(1) −1.3 (1) −1.08(3) −1.03(9) −0.71(2)
y-Randomization intercept (ryrand vs. R2yrand)e 0.15(4) 0.241(5) 0.01(4) 0.110(4) 0.37(5) 0.44(1) 0.47(4) 0.548(4)

a Statistical parameters are based on Q2 from y-randomization (Q2
yrand) and R2 from y-randomization (R2yrand), with the number of randomizations M=10 and M=1000. Values

typed bold represent critical cases.
b Minimum model-randomization difference: the difference between the proposed model (Table 1) and the best y-randomization in terms of correlation coefficients Q2

yrand or
R2yrand, expressed in units of the standard deviations of Q2

yrand or R2yrand, respectively. The best y-randomization is defined by the highest Q2
rand or R2rand.

c Confidence level for normal distribution of the minimum model-randomization difference.
d Percentage of randomizations characterized by model-randomization difference (in terms of Q2

yrand or R2yrand) at confidence levels N0.0001.
e Intercepts obtained from two y-randomization plots for each regression model proposed, with statistical errors in brackets for significant digits. Q2

yrand or R2yrand is the vertical
axis, whilst the horizontal axis is the absolute correlation coefficient ryrand between the original and randomized vectors y. The randomization plots are completed with the data for
the proposed model (ryrand=1.000, Q2 or R2).
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0.4 and considering them as serious cases of chance correlation. It
is noticeable that the four models in Fig. 4A are discriminated in
the Ryrand

2 –Qyrand
2 space by the distribution of the randomizations

(see also the maximum and average values and standard deviations of
Ryrand
2 and Qyrand

2 in Table 3). Although randomizations for all models
are placed at negative Q2

yrand and thus are far from the models along
the vertical axis, the same is not valid with respect to the horizontal
axis. As a cumulative effect, randomizations for OPS-PLS are well
clustered, those for PLS are moderately spread, whilst randomiza-
tions for SVR and LS-SVMare rather dispersed in the central part of the
Ryrand
2 –Qyrand

2 space and exceed 0.4 at the horizontal axis, characteriz-
ing the presence of chance correlation in the SVM-based models. The
second, a semi-quantitative criterion for y-randomizations detection is
based on the work of Rücker et al. [27], where the smallest difference
Fig. 4. The Q2
yrand against R2yrand plots for 10 (A) and 1000 (B) randomizations of the four QSAR

at the right upper corner, whilst the respective randomizations are spread over the central
between the model and randomizations in terms of Q2
yrand or R2yrand,

were expressed in units of the corresponding standard deviations.
Since differences are normally distributed, the smallest differences
can be easily expressed in terms of confidence levels [46], as shown in
Table 3. It can be noticed that SVR has somewhat critical confidence
level for Q2

yrand, but the analogue statistics for R2yrand of the SVM-based
models is rather unfavorable. The third approach, more quantitative
than the previous ones, takes into account frequencies of all ran-
domizations with distances from the respective models at confidence
level N0.0001. This way, 40% of randomizations are critical in R2yrand
for the SVM-based models, but only 10% are unfavorable in Q2

yrand for
SVR. The last, most quantitative and rigorous approach, is based on
Eriksson et al. [48], in which the absolute Pearson correlation
coefficient ryrand between the original and randomized vectors y is
models, with the corresponding linear regression (LR) lines. The real models are placed
and left parts of the plots.
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plotted against Q2
yrand and R2yrand. The plots (Figs. S1 and S2 left

in supplementary data) are extended to the model's data (i.e., r=1,
Q2

yrand=Q2 and R2yrand=R2), lines from linear regression are drawn,
and the intercepts are comparedwith recommended limits of 0.05 and
0.3 for Q2

yrand and R2
yrand, respectively. Taking into account these criteria

(Table 3), the intercepts on the axis R2
yrand for SVR and LS-SVM exceed

the limits. The three previous approaches to analyze y-randomizations
seem to be suitable for small M, whilst this one including ryrand shows
uncertainties not in the graphical presentation (Figs. S1 and S2 left)
but in numerical analysis, due to possible small intercept-to-error ratios
(see the respective values for OPS-PLS in Table 3). Concluding, 10 y-
randomizations pointed out that SVR and LS-SVM have failed in this
validation, OPS-PLS has shown to be certainly free of chance correla-
tions, whilst PLS is probably still inside the acceptable limits.

By increasing M from 10 to 1000 several effects, from minor to
significant, can be observed graphically (Figs. 4, S1 and S2) and
numerically (Table 3 and Table S1). The Q2

yrand–R
2
yrand plots for 10 and

1000 randomizations are very similar at qualitative level. Dispersion
of data points is increasing in the order OPS-PLS→PLS→LS-
SVM→SVR (see standard deviations in Table 3), the data distributions
are of similar basic shapes although more dispersed for SVR, and are
centered at very similar coordinates (average Q2

yrand and R2
yrand

increase slightly to moderately by applying largeM, see Table 3). Such
similarities can be also observed in the plots Q2

yrand–ryrand (Fig. S1)
and R2

yrand–ryrand (Fig. S2). The corresponding linear regression
equations for each QSAR model (Table S1), regardless of somewhat
larger values of intercepts and significantly smaller respective errors
at large M (Table 3), are mostly statistically indistinguishable when
the strict criteria of normal confidence level b0.0001 are applied
(Table S1). However, high standard deviations and large maximum
values of Q2

yrand and R2
yrand are due to large M. This means that two

first criteria presented, namely the rule of limit 0.4 for Q2
yrand and

R2
yrand, and the criterion of the smallest difference between the

proposed model and randomizations, are not applicable for large M.
The other two criteria, frequency of chance correlations over 25%, and
the y-randomization intercepts are statistically more adequate for
large M. In this sense, one can see from Table 3 that SVR and LS-SVM
have obviously failed in the 1000 y-randomizations test, whilst PLS
can be characterized as a still tolerable case but close to the limits. PLS
has high chance correlation frequency in Q2

yrand due to relatively low
Q2, and relatively high intercept on R2

yrand with substantial number of
data points above the intercept for rrand close to zero. The presented y-
randomization validations illustrate rather clearly that there is no
need to apply large M in QSAR, once sufficient information at small M
is obtained to judge validated models. It is interesting to note for
M=1000 that, whilst the four QSAR models are distinguished in the
R2

yrand–ryrand plot (Fig. S1), they are rather overlapped in the Q2
yrand–

ryrand plot (Fig. S2). The highest concentration of the data points is
situated around a R2

yrand–ryrand plane at about Q2
yrand=−0.5, which

is well visible in the three-dimensional ryrand–R
2
yrand–Q

2
yrand plot

(Fig. S3), describing y-randomization by three parameters of different
sensitivity with respect to chance correlation.

Why SVM is so promising in the predictions and validations except
for y-randomization at low and high M? Possible explanation is the
high susceptibility of SVM to overtraining when not good model
selection is obtained. Extensive literature search and inspection of 188
QSAR and QSPR research articles employing SVMhas revealed that the
SVM performance in LNO and y-randomization with respect to other
methods has never been explored systematically and in details. Only
routine comparison of SVM to other regression methods in terms of
LNO or y-randomization has been found in eight articles. The other
possible reason for the unfavorable behavior of SVM is that non-linear
SVM should be used in non-linear modeling, and not as a competitive
approach to simple calibration methods such as PLS in linear prob-
lems. Reader should notice that the choice of SVM for calibration and
classification purposes in QSAR and QSPR literature is frequently not
justified properly. SVM is being computationally more complex and
time-consuming than PLS even when used in its linear variant. Non-
linear SVM is a good choice when statistical tests like residuals analy-
sis for linear models, analysis of descriptor–y scatterplots etc., strongly
indicate the presence of non-linearities. In the present study, the lin-
ear data set is used with the purpose to raise questions about various
issues and difficulties in using non-linear SVM in typical QSAR works.

3.2. Inhibitor selection by the SVM-based models

The history of SVM in QSAR and QSPR is characterized by dif-
ficulties in interpretation of regression equations, up to the point to
consider SVM as “a state-of-the-art black-box modeling technique”
[49]. A large majority of QSAR and QSPR articles employing SVM (over
90%) interpreted regression models indirectly, by discussing SVM
prediction, validation performances and meaning of molecular
descriptors. Some articles dealt with linear SVM models by interpret-
ing SVM regression equations [50,51], and using star plots as quan-
tification of descriptor importance over bootstrap folds [12] (in total
10 articles). Such a situation is partially due to insufficient efforts in
chemical interpretation of SVM equations and the fact that it is much
easier to interpret relationships among descriptors than among
compounds. A general QSAR or QSPR has to be accompanied with “a
mechanistic interpretation, if possible” [25], and this section shows
that it is indeed possible to interpret SVM-based models directly.

The 14 descriptors were interpreted in details with respect to their
use in drug design and understanding intermolecular interactions
some years ago [29,31]. Understanding interactions between 1–48 and
the protease at molecular level is important for interpretation of the
SVM-based models. The previous exploratory analysis for the whole
data set [29] and the analogue analysis for the training set (Fig. 5) may
give some insight into the inhibitor selections by SVR and LS-SVM, i.e.,
discrimination of support vectors from non support vectors. 1–48
possess a central peptidic chain and four substituents (rings, aliphatic
fragments or combinations), as shown in the box in Fig. 1. There are
two inner substituents (drawn upwards or downwards of the chain)
P1 and P1′, and two terminal substituents (drawn left and right of the
chain) P2 and P2′ which occupy corresponding pockets of the HIV-1
protease [29,31]. The protein possesses six more pockets, named as S3,
S4, S5, and S3′, S4′ and S5′ in accordance to the distance from the
catalytic active site [52]. Larger peptidic inhibitors occupy six or more
pockets [53], but even in such cases a good complementarity between
substituents P1, P1′, P2 and P2′ and the pockets is necessary. These
facts and previous observations [29,31] indicate the importance of
molecular size for anti-HIV activity of 1–48 rather clearly.

Three biological activity classes [29], inhibitor selections by SVR
and LS-SVM, and clustering patterns for the inhibitors were inspected
in the exploratory analyses for the training data (Fig. 5). Classes for
slightly (pIC50=5.158 to 6.246), moderately (pIC50=6.640 to 8.268)
and highly (pIC50=8.886 to 10.267) active compounds are denomi-
nated class I, class II and class III, respectively. Class I contains 6
inhibitors (10, 21, 33, 38, 43 and 48), class II has 11 (2, 18–20, 23, 25,
28, 30, 42, 45 and 46) and class III 14 (4–7, 9, 11, 15–17, 27, 31, 34, 37
and 39) compounds. SVR selects 4 (10, 21, 38 and 43) inhibitors from
class I, 7 (2, 18, 19, 20, 25, 42 and 45) from class II and only 3 (17, 34
and 37) from class III. LS-SVM uses 3 (10, 21 and 38) inhibitors from
class I, 9 (2, 18, 19, 20, 23, 25, 28, 45 and 46) from class II and 6 (5, 11,
16,17, 27 and 37) from class III. Fractions of classes I, II and III captured
by SVR are 67%, 64% and 21%, respectively, and by LS-SVM are 50%, 82%
and 43%, respectively. Moderately active compounds are well
represented in both models, slightly active have weaker participation
in LS-SVM than in SVR, whilst highly active compounds are not well
presented, especially in SVR (Fig. 5).

HCA analysis for 48 inhibitors [29] resulted in four clusters (G1, G2,
G3 and G4) which reflected well systematic variations in biological
activity, molecular size and molecular structures. Basically the same



Fig. 5. HCA dendrogramwith incremental linkage for the A) SVR model and B) LS-SVMmodel, showing the clustering pattern of inhibitors (clusters denominated G1, G2, G3 and G4
as from the literature [29]), inhibitor selection by these models (■), and activity classes column (black: class I, gray: class II, white: class III). PC1–PC2 scores plot the C) SVR model
and D) LS-SVM model, showing the inhibitor selection by the models and activity classes (black squares: class I, gray squares: class II, white squares: class III). Selected and not
selected inhibitors are separated by a set of arbitrary lines.
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trends can be observed for the training set (Fig. 5A and B). Biological
activity and molecular mass roughly increase in the direction G1→
G2→G3→G4. The SVM-based models capture the cluster G1 equally
well. LS-SVM takes inhibitors fromG2andG3more frequently than SVR.
However,whilstG3participates in the SVRmodel verypoorly, G4 (i.e., its
part containing34,39 and42) iswell represented by thismodel. LS-SVM
does not use G4 at all. Probably this equilibrium between SVR and LS-
SVM is responsible for rather similar performances of the two models.

PCA analysis for the training set shows that the first three principal
components (PCs) capture 84.4% of the total variance, similarly to the
analysis for the complete set (85.9% [29]). Both analyses exhibit rather
similar distribution of inhibitors and activity classes in scores plots.
PC1–PC2 scores plot is sufficient to illustrate that inhibitors selected
by the SVM-based models can be discriminated from those not
selected (broken lines in Fig. 5C and D). The inhibitors not selected by
SVR are at the right-central and right-bottom regions. The analogue
area for LS-SVM is somewhat larger, including also the narrow top
region of the PC1–PC2 space, but excluding a part of the central-right
region. PC1 correlates with the biological activity and extensive
features like molecular size and content of valence electrons. PC2
is related to molecular topology, especially branchness. The right-
central region has the highest concentration of moderately and highly
active inhibitors which are of elevated molecular size and modest
branchness.

Why the SVM-based models exclude a large portion of highly
active inhibitors (more than 50%), which are of the greatest interest
for drug design? What does it mean chemically to select inhibitors
Table 4
Structural interpretation of nonzero Lagrange multipliers in the SVR and LS-SVM regression

Inhibitors,
clustersa

Clustering pattern

Clusteringd Structural basise

Support vectors: inhibitors selected by both SVR and LS-SVM
{2, 21} Cluster (0.924) Small difference in P1′/P2′ (–CH3)

{19, 25} Cluster (0.905) Small difference in P2′ (–CH2–, 2H)

{18, 20} Cluster (0.872) Small difference in P2′ (–CH2CH2–)

{17, 38} Cluster (0.821) Small difference in P1′ (–CH2–, 2H)

10 Close to {19, 25} (0.808) P1′ or P2′ is small or non-existing
45 Close to {18, 20} (0.724) P1 and P2′ are rather hydrophobic

37 Isolated (SVR); close to {16, 27}
and 11 (LS-SVM; 0.837)

P1′ and P2′ are rather hydrophobic,
one of them has 1–2 heteroatoms (O, S)

Support vectors: inhibitors selected by either SVR or LS-SVM
{23, 28} Cluster (0.913) Small difference in P2′ (–CH2–)

{16, 27} Cluster (0.911) P1′ and P2′ contain 2 heteroatoms (O, S)

46 Close to {23, 28} (0.889) P2′ contains 1–2 heteroatoms (O)
5g Close to 17 (0.966) P1′ is longer than benzyl by two C atoms
11 Close to {16, 27} (0.872) P1′ and P2′ contain 2 heteroatoms (O, S)

42 Close to 34 (0.681) P2 and P2′ are bicyclic systems; P1′ is a be
the chain around OH and P1′ is the same

34 Close to 42 (0.681) P2 and P2′ are bicyclic systems; P1′ is a be
the chain around OH and P1′ is the same

43h Isolated G1: rather hydrophobic substituents

a Two-membered inhibitor clusters, inhibitors close to some cluster or inhibitors far from
selected by the SVR or LS-SVM model as important for the final regression equation.

b Lagrange multipliers for inhibitors expressed as percentage of the maximum absolute v
c Main structural characteristics which distinguish an inhibitor from other inhibitors in t
d Position of a selected inhibitor with respect to other selected inhibitors. Similarity inde
e Structural similarity or small difference between close inhibitors.
f One of the clusters G1, G2, G3 and G4 to which the inhibitor or cluster belongs (HCA an
g Not treated in cluster with 17 because {17, 38} is common for SVR and LS-SVM.
h At similarity index 0.321 with respect to other inhibitors in the cluster G1.
by SVM? The answer lies in the obtained Lagrange multipliers αi
(⁎)

(Table 1) and molecular structures (Fig. 1). According to the SVM
theory [9,36,54], instead offinding the regression function thatfits best
to the data, theflattest hyperplane (LS-SVM), or theflattest hyperplane
with ε-precision (insensitive zone) considered as a hypertube (SVR)
that best fits the data, is constructed in a high-dimensional feature
space. Geometrically speaking, all samples can be characterized by two
Lagrange multipliers in SVR: αi and αi⁎ related to the position
regarding the hypertube. Samples within the hypertube are non
support vectors (αi

(⁎)=0), whilst samples above (αiN0 and αi⁎=0)
and below the hypertube (αi=0 and αi⁎N0) are support vectors. Only
one Lagrangemultiplier per sample is active (αiαi⁎=0). Depending on
which of them is active, it appears as a positive (αi) or negative (−αi⁎)
coefficient in the regression equation, shown byα values in Table 1. LS-
SVM, on the contrary, uses all the training data, so each sample is
associated to a nonzero Lagrange multiplier αi (αi=C ei) related to its
distance and position (orientation) with respect to the estimated
function in the variables space. The sparse approximation is obtained,
in which samples associated to smaller absolute values of Lagrange
multipliers are eliminated (non support vectors).

Table 1 shows that the SVR regression equation is based on 7
samples above (αN0) and 7 below the hypertube (αb0). The LS-SVM
regression equation includes 9 samples above (αN0) and 9 below
the hypercurve (αb0). Detailed inspection of molecular structures
(Fig. 1) was combined with the exploratory analysis (Fig. 5) and
inspection of Lagrange multipliers (Table 1) expressed as percentages
of the maximum multiplier (Table 4). This analysis has indicated that
equations.

%Lagrange multiplierb Structural peculiarity of selected inhibitors
with respect to others in the same cluster Gc

Gf SVR LS-SVM

G2 2: 100 2: 88 2: P1′ consists of two substituents
21: −100 21: −100 21: P2′ is a branched substituent

G1 19: 41 19: 82 19: P2′ is a cycloalkene group (C5)
25: −6 25: −32 25: P2′ is a cycloalkane group (C6)

G1 18: 32 18: 47 18: P2′ is an unsubstited benzyl group
20: −38 20: −74 20: P2′ is an unsubstituted indanyl group

G2 17: 28 17: 44 17: P1′ ends in a highly hydrophobic t-Bu
38: −54 38: −78 38: P1′ consists of two substituents; one

is a hydrophobic ring fragment at the chain
G1 −26 −42 P1′ is non-existing (H atom)
G1 13 24 P1 is hydrophobic, aliphatic bicyclic system;

P2 is in unusual conformation
G3 13 30 P2 contains a furane ring

G2 23: 0 23: −43 23: P2′ contains a methylformyl group
28: 0 28:−56 28: P2′ contains an endocyclic O atom

G3 16: 0 16: 25 16: P1′ contains an exocyclic S atom
27:0 27: 39 27: P2′ contains an endocyclic O atom

G2 0 38 P1′ is a phenyl and not a benzyl group
G2 0 37 P1′ is a long and rigid conjugated p system
G3 0 −29 P1′ ends in a strong sp3 hydrogen bonding

group (OH)
nzyl; G4 −3 0 P1 is a small group (i-Pr) and P2 is a bicyclic

heteroaromatic system
nzyl; G4 −2 0 Highly symmetric; all substituents are

aromatic rings
G1 2 0 Highly symmetric; P1, P1′ are bicyclic

aliphatic system; P2, P2′ contain t-Bu

any cluster. It is understood by inhibitor or support vector every compound which was

alue obtained from the SVR or LS-SVM regression equation.
he same cluster G.
x for a cluster or between a cluster and an inhibitor is given in brackets.

alysis in Fig. 5A and B).
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there are three types of inhibitors: 1) support vectors for both models
SVR and LS-SVM; 2) support vectors in either SVR or LS-SVM; and
3) non support vectors, (always zero Lagrange multipliers). Clusters
{2, 21}, {17, 38}, {18, 20}, and {19, 25} at similarity index N0.8 and three
inhibitors (10, 37 and 45) participate in both SVM equations. Clusters
{16, 27} and {23, 28} at similarity index N0.9 and 6 inhibitors (5,11, 34,
42, 43 and 46) are included in one of the SVMmodels. The clusters are
connected with other selected inhibitors into larger clusters within
one of the clusters G (G1, G2, G3 and G4, Fig. 5A and B). The rationale
for these patterns is a high molecular similarity in substituents and in
chains, frequently including small group rearrangements (specified in
Table 4). The percentage Lagrange multipliers and their absolute
values for the whole training set do not correlate clearly with the
biological activity, molecular descriptors or scores in Fig. 5C and D.
HCA dendrogram (Fig. 5A and B) also does not show noticeable
relationship between the Lagrange multipliers and positions of se-
lected inhibitors. However, molecular diversity is the feature which
greatly affects the selection of inhibitors by the final models. Fig. 1 and
Table 4 show that the more peculiar the molecule within its cluster G
or the whole training set, the more distant it is from the group of
Fig. 6. Relationships between absolute values of relative Lagrange multipliers (Table 3) and
The original relationships (plots A and B) are linearized (plots C and D) by means of linea
points, |%αSVR|=53(7)−59(13) log([PC12+PC22]1/2) with pb0.001 for t-statistics, r=−
−20(5) |PC1+1.0| with pb0.001 for t-statistics, r=−0.723, F1,16=17 with pb0.001.
inhibitors along an imagined high-dimensional line or curve in the
feature space. Consequently, inhibitors with small structural varia-
tions are close to each other (highly concentrated as in Fig. 5C and D),
defining a rather well geometrical pattern in the feature space, and are
well captured by a hypertube or hyperplane (well predicted by the
estimate function), so, they are not support vectors. Other inhibitors,
due to their peculiar molecular structure, deviate from such trends, so
the final hypertube or hypercurve has to be adjusted to incorporate
them. Small clusters and inhibitors in Table 4 are arranged in
decreasing order of the absolute Lagrange multipliers, coinciding
well with the degree of structural diversity relative to that of 1. {2, 21}
is characterized by branching at a substituent site (P1′ or P2′) and not
by one substituent, whichmakes this cluster unique in this aspect. {19,
25} possesses a small hydrophobic and aliphatic ring instead of an
aromatic at P1′, which also makes it unique, but this molecular
diversity is somewhat smaller. {18, 20} contains unsubstituted
aromatic rings at P1′, meaning that there is no change in branching
or size, but no hydrogen bonding or polar group present is present. {17,
38} is characterized by increasing hydrophobicity of the benzyl at P1′
by placing a new group at the benzene ring (17) or introducing a ring
principal components (PCs) for the SVR (left plots) and LS-SVM (right plots) models.
r regression. The obtained equations have the following statistics: a) for SVR: 14 data
0.788, F1,12=20 with pb0.001; and b) for LS-SVM: 18 data points, |%αLSSVM|=84(9)
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at the same substitution site within the chain. Table 4 continues with
smaller variations and ends with structures having larger substituents
among which one is small (42) or which are positioned in some
symmetrical way (34 and 43). These structural variations give origin
to changes in molecular descriptors, intermolecular interactions with
the protease, and finally, in the biological activity.

Two-membered clusters and other associated inhibitors in Table 4
can be recognized in the dendrogram and scores plot (Fig. 5) and
also in the feature space. It means that a hypertube or hypercurve
passes through a cluster whose members have different signs of
Lagrange multipliers (the signs are the same for SVR and LS-SVM,
see Table 1), and passes by a cluster with members of the same sign
of αi or αi⁎. Besides this information, one more fact can be extracted
for selected inhibitors which are in common for SVR and LS-SVM.
Lagrange multipliers are positive for 2, 17–19, 37 and 45, and
negative for 10, 20, 21, 25 and 38. Careful inspection of respective
molecular structures using 1 as a standard reveals that structural
changes result in mass shift from right to left (from P2′ to P1′ or
from P1′ to P1) for positive Lagrange multipliers, whilst negative αi

and αi⁎ are related to the mass concentration in the opposite
direction (from P1′ to P2′). The two-membered clusters nicely show
these trends: –CH3 is placed at P1′ site in 2 (α2N0) whilst –CH2– is a
part of P2′ in 21 (α21b0). P2′ is smaller in 18 or 19 (αiN0) than in 20
or 25 (αib0). More complicated are {17, 38} where an alkyl (t-Bu) is
at P1′ in 17 (α17N0), and another alkyl (–CH2CH2–) is in the ring
between P1′ and P2′ in 38 (α38b0). 10 is unsubstituted in P1′
(α10N0), whilst there is a large substituent P1 in 45 (α45N0) and a
ring (instead of t-Bu) in P2 of 37 (α37N0).

Very small Lagrange multipliers for 34, 42 and 43 in SVR minimize
the differences between the two SVM-based model selections of
highly active inhibitors from the cluster G4 (Fig. 5). Now it becomes
clear why SVM does not select a representative subset of inhibitors
from class III. There are four possible reasons for this: the tight
clustering of highly active compounds with respect to the biological
activity (Fig. 2) and molecular descriptors (Fig. 5), intrinsic insensi-
Fig. 7. Exploratory analysis explaining the variable selection by OPS-PLS. A) HCA dendrogr
(clusters denominated H1, H2, H3 and H4 as from the literature [29]) and their selection (■).
H2 and separated H3 and H4 clusters).
tivity of SVM to molecular diversity of larger molecules, and initial
data transformation which reduces molecular diversity. Variations in
structures of larger molecules (mainly from class III), become small
when considered relative to molecular size. Inhibitors with larger
absolute Lagrange multipliers are from clusters G1 and G2 (Table 4),
and regularly smaller are from classes I and II. Variation in structures
of highly active compounds is important for drug design to find and
optimize the lead compound, so this is an issue to analyze carefully in
future SVM applications in QSAR.

The absolute values of Lagrange multipliers from Table 4 (SVR and
LS-SVM data) show interesting correlations with principal components
(PCs), some of which are statistically very significant (Fig. 6). The
absolute Lagrange multipliers of the SVR model are non-linearly
correlated to [PC12+PC22]1/2 (Fig. 6A), i.e., the diagonal of PC1 and
PC2 along which the support vectors are mainly concentrated (Fig. 5C),
with the maximum absolute multipliers around the plot's origin. The
multipliers of the LS-SVMmodel are also non-linearly correlated to the
absolute values of PC1 along which the inhibitors are mainly
concentrated (Fig. 6B), with absolute maxima at small PC1. It is likely
that the non-linear character of these relationships between PCs (or
more precisely, functions of PCs) and Lagrangemultipliers are problem-
and method-dependent. Physical meaning of both scores and multi-
pliers is the position of a sample point with respect to some reference in
the feature space. When taking into account these observations, the
connection between SVM and PCA methodologies may be better
understood in a particular QSAR study. The two relationships can be
linearized by logarithmic (Fig. 6C) and absolute value (Fig. 6D)
transformations followed by linear regression. The resulting regression
equations are statistically significant,which canbe seen fromcorrelation
coefficients (absolute values N0.7) and t- and F-statistics at confidence
level b0.001, as obtained by using the QuickCalcs software [55]. When
extended to all non support vectors, the most significant correlations
respect to descriptors X1–X14, activity y and principal components are
modest (correlation coefficients from −0.20 to −0.48), and relation-
ships are visible in the scatterplots (not shown).
am with incremental linkage showing the clustering pattern of molecular descriptors
B) PC1–PC2 loadings plot showing the inhibitor selection (■) and clustering (mixed H1–
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3.3. Variable selection by the OPS-PLS model

OPS-PLS [28] is a new PLS approach to QSAR, and hence, its
performance in terms of variable selection is rather unknown and
worth to analyze. Fig. 7 presents exploratory analysis for the training
data set (using 14 descriptors). These results are very similar to those
for the full data set (i.e., for 48 descriptors [29]). Inhibitors are grouped
in two main clusters: the larger consisting of H1, H2 and H3, and the
smaller H4. The two clusters differ in the profile of descriptor–activity
scatterplots, according to which all descriptors in H4 (X1, X4, X7 and
X8) havemore dispersed data in these plots than those for H1–H3. This
difference is more obvious when the regression coefficients of the PLS
model (Table 1) and respective correlation coefficients are taken into
account. A good visualization of this differentiation can be obtained
when the descriptors are plotted against the Mahalanobis distance
(Fig. S4 in Supplementary data), where the scatterplots for descriptors
from cluster H4 are better structurally defined than those for other
descriptors. By other words, due to high correlation between
Mahalanobis distance and the scores from significant principal
components, these four descriptors do not bring new information to
the model. Therefore, since the OPS algorithm uses various informa-
tion vectors, exclusion of H4 and the corresponding loadings space
(Fig. 7) during variable selection becomes more obvious. Five selected
descriptors are well spread in the remaining clusters: X3, X6 and X13

are from H1, X9 is from H2, and X10 is from H3. A rather good
distribution of these descriptors is noticeable in the loadings plot. X3 is
from {X2, X3, X14}, so the complete structure of H1 is well preserved.

Descriptors X1–X14 have been classified [29] in four ways. With
respect to their dimensionality, they are 1D (one-dimensional) when
originated from physical and chemical constants, 2D when based only
on molecular topology, and 2D with some 3D information when
created from molecular structures encoding some stereochemical
information as in Fig. 1. The 1D and 2D classes are not present in the
OPS-PLS model, which means that the most important descriptor do
include certain 3D information. X1–X14 can be classified according to
real phenomena they describe: 1D (chemical composition), 2D
(molecular topology, chemical bonding and main intramolecular
interactions), and 3D (intermolecular interactions in the 3D space).
The 3D class is abundantly presented in OPS-PLS (X3, X6, X9 and X10)
and the 2D class has one descriptor (X13). The descriptors can be
divided into extensive (depending on molecular size) and intensive
(not depending on molecular size). Among the selected descriptors,
only X6, the electron density for π- and lone pair electrons, is
intensive. X1–X14 can be discriminated with respect to their natures as
electronic, steric-geometrical, electronic-geometrical, compositional,
hydrophobic and topological descriptors. Most classes, namely
electronic (X6 and X13), topological (X3), steric-geometrical (X9) and
electronic-geometrical (X10) participate in the OPS-PLS model. These
classes show that two aspects of molecular structure, the geometrical
and electronic structures, are inseparable for 1–48, as has been
noticed previously [29]. How to interpret an OPS-PLS model in terms
of molecular descriptors? Since the OPS algorithm, like any other
computational approach, deals with mathematical and computational
aspects and not chemistry, the way to ensure that the final model will
be interpretable is to use informative descriptors, understandable
from the chemical point of view whenever possible.

4. Conclusions

The common practice about SVM-based methods in QSAR and
QSPR is to consider only prediction power, leave-one-out cross-
validation and external validation of final regression models. Conven-
tional linear models in QSAR and QSPR are required to be validated by
more tests, and mechanistic interpretation must be given whenever
the action of the studied compounds is known. Hence, it has become a
common taboo that SVMmodels are always good, they do not need to
be additionally validated, there is no need and sense or is not possible
to give direct mechanistic interpretation of these models. Another
frequent approach is not to test the data properly for non-linearity, but
to go directly into parallel construction of non-linear SVM and linear
models and conclude from some comparative tests the superiority of
SVM, ignoring other validations that could or could not confirm the
validity of SVM. These viewpoints presume that there is no necessity
to investigate the addressed issues about SVM, especially because of
several bootstrapping validations during the selection of the best SVM
model.

The present work is an initial study with the aim to break these
taboos, question the validation performance of SVM and propose its
direct mechanistic (chemical) interpretation. In this study case, SVR
and LS-SVM models were compared to PLS and OPS-PLS models. The
results showed that SVM was superior to PLS and OPS-PLS in
prediction, leave-one-out crossvalidation and external validation.
However, SVM was not superior to OPS-PLS in leave-N-out cross-
validation, and failed in y-randomization, which can be a consequence
of SVM overtraining and the linear character of the data set used. OPS-
PLS has shown to be the only one with undoubtedly satisfactory
performance both in prediction and all validations. The OPS-PLS is a
promising methodology which should be used in conjunction with
informative and interpretable descriptors.

The regression models were interpreted in terms of selected
descriptors and inhibitors via exploratory analysis. For the first time
up to our knowledge, Lagrange multipliers, their absolute values and
in some cases their signs, were interpreted in terms of molecular
structure, descriptors and biological activity. Certain relationships
between absolute Lagrange multipliers and principal components
were detected as statistically significant. Elevated molecular diversity
significantly contributed to nonzero Lagrange multipliers, and
systematic differences in molecular structures determined signs of
the multipliers. SVM showed to be insensitive to structural variations
of highly active inhibitors.

The principles of validation and chemical interpretation of SVR and
LS-SVM models given in this work are proposals for future investiga-
tions about SVMmodels in QSAR and QSPR, valid for anymodeling and
validation conditions. It has been shown that a small number of y-
randomization runs is sufficient to detect the presence of chance
correlation. Definite conclusions about the SVM behavior should be
obtained by more extensive studies where various data sets with
several training-external splits are explored, and different modeling
procedures are tested.
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