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a b s t r a c t

Volatile compounds in fifty-eight Arabica roasted coffee samples from Brazil were analyzed by SPME-
GC-FID and SPME-GC-MS, and the results were compared with those from sensory evaluation. The main
purpose was to investigate the relationships between the volatile compounds from roasted coffees and
certain sensory attributes, including body, flavor, cleanliness and overall quality. Calibration models for
each sensory attribute based on chromatographic profiles were developed by using partial least squares
(PLS) regression. Discrimination of samples with different overall qualities was done by using partial least
squares-discriminant analysis (PLS-DA). The alignment of chromatograms was performed by the corre-
lation optimized warping (COW) algorithm. Selection of peaks for each regression model was performed
by applying the ordered predictors selection (OPS) algorithm in order to take into account only significant
compounds. The results provided by the calibration models are promising and demonstrate the feasibility
of using this methodology in on-line or routine applications to predict the sensory quality of unknown
east squares
Brazilian Arabica coffee samples.

According to the PLS-DA on chromatographic profiles of different quality samples, com-
pounds 3-methypropanal, 2-methylfuran, furfural, furfuryl formate, 5-methyl-2-furancarboxyaldehyde,
4-ethylguaiacol, 3-methylthiophene, 2-furanmethanol acetate, 2-ethyl-3,6-dimethylpyrazine, 1-(2-
furanyl)-2-butanone and three others not identified compounds can be considered as possible markers
for the coffee beverage overall quality.
. Introduction

The establishment of mechanisms that allow the evaluation,
ssurance and certification of the quality of food products is
n indispensable strategy for maintaining commercial compet-
tiveness. The great number of norms created by international
rganizations, like the International Organization for Standard-
zation (ISO), indicates the importance of the quality guarantee
etermined by a set of parameters, frequently used in commer-
ial transactions [1]. These measurable parameters must be faced

s an essential element to improve the aggregate value of the agro-
ndustrial production worldwide. To attain an objective guarantee,
esearch has been carried out for better evaluation of the coffee
everage in order to correlate its quality with physicochemical char-

∗ Corresponding author. Tel.: +55 19 3521 3102; fax: +55 19 3521 3023.
E-mail address: marcia@iqm.unicamp.br (M.M.C. Ferreira).

003-2670/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2008.12.028
© 2008 Elsevier B.V. All rights reserved.

acteristics and the chemical composition of green or roasted beans
[2–7].

Commonly, the quality of coffee is evaluated according to crite-
ria such as bean size, color, shape, cupping and number of defects
[2,6,8,9]. However, cupping, also known as cup tasting, is still the
most widespread technique employed to evaluate the final quality
of this product. Arabica coffee, generally regarded as superior to
Robusta coffee in terms of sensory attributes, accounts for approx-
imately 70% of world production of this commodity [10].

Flavor plays an important role in sensory analyses and could be
considered a “fingerprint” of products, but despite its importance,
there are few studies that correlate this characteristic with the final
quality of coffee beverage [9]. This correlation, using multivariate

analysis [11], is an excellent tool in the quality control of foods and
agricultural products and is being applied successfully in analyses
of hazelnut, vinegar, juices and wine [12–16].

The chemistry of coffee flavor is highly complex and is still not
completely understood. The main families of chemical compounds

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:marcia@iqm.unicamp.br
dx.doi.org/10.1016/j.aca.2008.12.028
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Fig. 1. Schematic representation of the main volatil

ound in green coffee, and responsible for the volatiles in roasted
offee, are alkaloids like trigonelline, chlorogenic acids, carbohy-
rates, free sugars like sucrose, lipids and proteins. During the
oasting process, the composition of coffee beans is drastically
hanged and several hundreds of substances associated with coffee
avor and taste are formed [17]. A general description of the volatile
ompounds, their precursors and the main volatile formation reac-
ions are shown in Fig. 1.

Several efforts have been made to identify the main volatile com-
ounds responsible for the real flavor of roasted coffee [18–25].
owever, the question of which volatiles are the most relevant
ontributors for the quality of coffee has not yet been elucidated.

Among the analytical techniques used to analyze and sepa-
ate volatile fractions of different products, gas chromatography
as been established as one of the most important. Coupled with
as chromatography, solid phase microextraction (SPME) has been
hown to be an excellent sampling method, allowing simultane-
us extraction and concentration of analytes from sample matrices
26].

With the aim to identify characteristic volatile compounds that
ould be responsible for prediction of certain sensory attributes
f Brazilian Arabica coffee, chromatographic profiles and sensory
rofiling were compared in this work using chemometric data treat-
ent.

. Materials and methods

.1. Coffee samples

Fifty-eight Arabica green (not roasted) coffee samples from dif-
erent origins were supplied by Instituto Agronômico de Campinas.
lat coffee beans were visually inspected, and those with defects

ike black, insect-damaged, immature and broken were excluded.
he roasting process was carried out in a gas faired drum roaster
Pinhalense S/A Máquinas Agrícolas) to the medium roast point.
oasted coffee samples were packed in films consisting of plas-
ic (polystyrene and polyethylene) and aluminum, to avoid aroma
ation reactions during the coffee roasting process.

losses and contamination by external substances, and stored at
−5 ◦C for a maximum period of 48 h before chromatographic anal-
yses.

2.2. Sensory analysis of the coffees

All 58 Arabica coffee samples were evaluated by two cuppers.
The cup quality was assessed by flavor, body, cleanliness and overall
quality using sample preparation according to Brazilian legislation
(Normative instruction no. 8, from 11 June 2003) obtained from
www.pr.gov.br/claspar/pdf/cafebenef008 03.pdf.

Thus, for the four sensory attributes selected for evaluation
a fivepoint scale was adopted, in such a way that each of the
attributes, according to the degree of sensory magnitude perceived
were given corresponding scale points, e.g., the cleanliness classifi-
cations ‘rio’ (1) and ‘strictly soft’ (5) defined the extreme scores on
the rating scale.

2.3. SPME devices and GC-FID parameters

SPME fibers coated with 65-�m thick polydimethylsilox-
ane/divinylbenzene (PDMS/DBV) and the manual holder were
purchased from Supelco (Bellefonte, PA). The fibers were condi-
tioned according to the SPME data Sheet (T7941231) from Supelco
in the GC injector port. The analyses were performed on a G-6850
GC-FID system (Agilent, Wilmington, DE) fitted with a HP-5 capil-
lary column (30 m × 0.25 mm × 0.25 �m). Helium (1 mL min−1) was
the carrier gas. The oven temperature was programmed as follows:
40 ◦C → 5 ◦C min−1 → 150 ◦C → 30 ◦C min−1 → 260 ◦C. The injection
port was equipped with a 0.75 mm i.d. liner and the injector was
maintained at 220 ◦C in the splitless mode. Under these condi-
tions, no sample carry-over was observed on blank runs conducted

between extractions.

Identification of the extracted analytes was performed on a
HP-5890 gas chromatographer (Hewlett-Packard, Wilmington, DE,
USA) equipped with a HP-5973 mass-selective detector fitted with
the same column and operated under the same conditions as

http://www.pr.gov.br/claspar/pdf/cafebenef008_03.pdf
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Table 1
Main compounds identified from the mass analyses by comparison of their MS spectra with those of the NIST MS data base and literature.

Peaks Retention time (min) Compounds Main m/z ions observed in MS spectraa,b Math

1 1.93 Methanethiol 47 (B) 923
2 2.02 Acetonitrile 41(B) 759
3 2.22 2-Methylpropanal 43(B), 72 879
4 2.32 2,3-Butadione 43(B), 86 973
5 2.44 2-Methylfuran 82(B), 53, 39 909
6 2.68 3-Methylbutanal 44(B), 58, 39 866
7 2.68 2-Methylbutanal 41(B), 57, 39 916
8 2.74 Thiophene 84(B), 58 877
9 3.1 2,3-Pentadione 43(B), 29, 57 928

10 3.2 Acetic acid 43(B), 60 949
11 3.25 2,3-Pentanone 43(B), 57, 100 928
12 3.45 2,5-Dimethylfuran 96(B), 43, 53 928
13 3.55 3-Methylpyridazine 94(B), 39, 65 865
14 3.68 Methyl acetate 43 (B) 915
15 3.9 Pyrazine 80(B), 53 892
16 4.17 1-Methylpyrrole 81(B) 951
17 4.4 Pyridine 79(B), 52 978
18 4.4 1H-pyrrole 67(B), 39 933
19 4.6 4,5-Dimethyloxazole 97(B), 43, 55 850
20 4.7 Toluene 91(B) 958
21 4.93 3-Methylthiophene 97(B) 890
22 5.1 2,3-Hexanedione 43(B), 71 892
23 5.36 3,4-Hexanedione 57(B) 907
24 5.52 Dihydro-2-methyl-3(H)furanone 43(B), 72, 100 904
25 5.77 Methylpyrazine 94(B), 67 954
26 5.83 2-Fururyl methyl ether 81(B), 53, 112 918
27 5.88 3-Methylphenol (m-cresol) 108(B) 827
28 5.95 Furfural (furancarboxaldehyde) 96(B), 39 966
29 6.0 2,N-Dimethylpyrrole 94(B) 845
30 6.4 Trimethyloxazole 111 (B), 43, 55 802
31 6.42 2-Propenyl-2-furan 108(B), 79 830
32 6.65 2-Furanmethanol 98(B), 41, 53, 81, 69 950
33 6.9 3-Methylbutanoic acid 60(B), 87 789
34 6.9 2-Methylbutanoic acid 74(B), 41, 57 834
35 7.72 Furfuryl formate 81(B), 126, 53 880
36 7.84 2-Furanmethanethiol 81(B), 114 864
37 7.94 2,N-Dimethylpyrazine 108(B), 42 716
38 8.2 Ethylpyrazine 107(B) 900
39 8.5 Butyrolactone 42(B), 67, 86 919
40 8.6 2,N-Dimethylpyrrole 94 (B) 979
41 8.65 Ethenyl pyrazine 106(B), 52, 79 820
42 9.1 2-n-butylfuran 81(B), 43, 53,124 778
43 9.24 Benzaldeyde 106(B), 77, 51 893
44 9.38 5-Methyl-2-furancarboxaldeyde 110(B), 53 963
45 10.02 3-Methyl-2(5H)furanone 41(B), 98, 69 941
46 10.29 2-Furanmethanol acetate 81(B), 98, 43,140 954
47 10.36 2-Ethyl-n-methyl pyrazine 121(B) 894
48 10.6 1-Methyl-1H-pyrrole-2-carboxaldeyde 109(B), 53, 80 894
49 10.65 2-Proponylfuran 95(B), 124 872
50 11.17 2-Ethenyl-n-methylpyrazine 120(B), 52 829
51 11.43 2-Acetyl-5-methylfuran 109(B), 124 936
52 11.48 Benzeneacetaldeyde 91(B), 120 932
53 12.14 1-(2-Furanyl)-2-butanone 57 (B), 81, 53, 138 829
54 12.3 Acetylfuran 95(B), 110 725
55 12.5 2-Acetylpyrrole 94(B), 109, 66 934
56 12.68 2-Acetyl-N-methylpyrrole 108(B), 123 905
57 12.77 2-Ethyl-3,6-dimethylpyrazine 135(B) 931
58 12.85 p-Guaiacol 121(B), 135 915
59 13 3-Ethyl-2-hydroxycyclopenten-1-one 126(B) 752
60 13.2 Maltol 121(B), 135 815
61 14.68 N/I – –
62 15.52 2-Furfuryl-5-methylfuran 162(B), 91 742
63 15.6 1-Furfurylpyrrole 81(B), 147 936
64 15.8 N/I – –
65 16.9 N/I – –
66 18.18 3,4-Dihydroxyacetophenone 137(B), 152 834
67 18.28 4-Ethylguaiacol 137(B), 152 855
68 18.67 Furfuryl methyl disulfide 81(B) 823
69 18.67 Difurfuryl ether 81 (B) 929
70 18.82 4-Vinylguiaicol 135(B), 150, 77, 107 894

N/I: not identified.
a m/z of each compound from the NIST data bank.
b Base peak c.
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he GC-FID. GC–MS data treatment was carried out using the
utomated Mass Spectral Deconvolution and Identification System
AMDIS) v. 2.61 software and the NIST Mass Spectral Search Program
. 1.6d (NIST, Washington, DC, USA), as well as making comparisons
ith earlier reports on the volatile compounds of roasted coffee

27–29].

.4. General SPME procedure for sampling and injection

Ground coffee (250 mg) and 2 mL of saturated aqueous sodium
hloride solution were transferred to a septum-sealed glass sample
ial (5 mL). After 10 min of sample/headspace equilibration under
gitation of 900 rpm at 42.5 ◦C, the fibers were exposed to the sam-
le headspace for 22 min. After sampling, the fiber was immediately
laced in the injection port of the GC and the analytes were ther-
ally desorbed at 220 ◦C. All analyses were carried out in triplicate.

.5. Chemometric data treatment

The original chromatographic profiles were organized into a
atrix format X (I × J), where each replicate represented one sam-

le. Data analysis was carried out in Matlab 6.5 software (The
athWorks Co., Natick, MA, USA) using the computational package

LS Toolbox (Eigenvector Research, Inc., PLS Toolbox version 3.02.)
30]. The chromatograms’ alignments were performed using the
orrelation optimized warping (COW) algorithm [31] obtained from
ww.models.kvl.dk/source/. The chromatogram with the best peak

esolution was used as the reference vector. The chromatograms
ere divided into 10 regions and, for each region, the segment

ength and the slack–parameter used were 10 and 1, respectively.
Each aligned profile was normalized to unit length, smoothed

y the Savitzky–Golay algorithm, with a window size of 10 points
ollowed by taking the absolute values of first derivative [32] and,
astly, the matrix X was column-wise autoscaled and the vector y of
ensory notes was mean-centered. Variable selection was carried
ut by the ordered predictors selection (OPS) method [33].

The regression methods used for data treatment were partial
east squares (PLS) [11] and partial least squares-discriminant anal-
sis (PLS-DA) [34].

In PLS regression, a dependent variable, y, is modeled using
atent variables (LV), maximizing the covariance between X and
. The PLS model can be presented as follows [35]:

= TkPT
k + E (1)

= Tkq + f (2)

here X(I, J) represents the data matrix (chromatograms), vector
(I, 1) is a dependent variable (sensory analysis notes), T(I, k) is the
core matrix, PT(k, J) denotes the transposed loadings matrix, q(I,
) is a loading vector and E(I, J) and f(I, 1) are the residuals (k is the
umber of latent variables).

In order to predict yi for a new autoscaled chromatogram xi(as)
1, J), the following equation can be used:

ˆ i = ȳ + xi(as)b (3)

here ŷi is the predicted dependent value for the ith new sample, ȳ
enotes the mean of the dependent values for the calibration sam-
les, and b(J, 1) is the computed vector of PLS regression coefficients
36]:

= W(PTW)
−1

q (4)
here W is the matrix of loading weights.
While PLS is used as a calibration method, PLS-DA is a discrimi-

ation method where the model is built between the matrix X and
he matrix of known classes Y. In PLS-DA each class is described
a Acta 634 (2009) 172–179 175

by a column in Y. To each class variable is assigned a value 1 or 0
depending on to which class an object belongs.

The optimal model complexity, i.e., the number of latent factors
(k) in the PLS or PLS-DA models, can be determined by a cross-
validation procedure. Leave-one-out cross-validation is performed
by excluding one chromatogram at a time, the model is built and
the estimated class (ŷi) for each sample is used to calculate the root
mean square error of cross-validation (RMSECV). The performance
of the final PLS or PLS-DA model is evaluated in terms of RMSECV
(Eq. (5)), computed for different numbers of latent variables, and
the correlation coefficient of cross-validation (rcv) (Eq. (6)).

RMSECVk =

√∑I
i=1(yi − ŷi)

2

I
(5)

In Eq. (5), yi is the measured response of the ith sample, ŷi is
a predicted response from a calibration equation obtained for the
data without the ith sample and I is the number of samples in the
calibration set. The optimal PLS model corresponds to the number
of latent factors resulting in the lowest RMSECV.

The correlation coefficient between the estimated values in
cross-validation and the experimental values of the reference
method is

rcv =
∑I

i=1(ŷi − ¯̂y)(yi − ȳ)[∑I
i=1(ŷi − ¯̂y)

]1/2[∑I
i=1(yi − ȳ)

]1/2
(6)

where ¯̂y is the mean estimated response.
Once the model has been internally validated and tested by an

external data set, it can be used for the prediction of new sam-
ples. For the external validation set, the root mean square error of
prediction (RMSEP) is used:

RMSEP =

√∑I
i=1(yp

i
− ŷp

i
)
2

Ip
(7)

where Ip is the number of samples in the test set and ŷp
i

and yp
i

are the predicted and measured response values for the test set
samples.

3. Results and discussion

3.1. Mass detection of volatile compounds

Two of the fifty-eight samples supplied by the Agronomic Insti-
tute of Campinas were analyzed by mass spectrometry. These two
samples represented products with the lowest (1.5) and the highest
(4.5) notes in the overall quality attribute. More than 250 volatile
compounds were detected in these mass analyses. Table 1 shows
the 70 principal compounds and their respective retention times,
nomenclature, fragmentation and number of match. These com-
pounds are usually encountered in mass spectrometry analyses of
roasted coffee [27–29].

3.2. Partial least squares-discriminant analysis

Fig. 2A reports the original overlapped chromatograms of
volatile compounds obtained from a PDMS/DVB fiber. It is visible
that a pretreatment is necessary to correct peak shift. Fig. 2B shows
the profiles pretreated by the COW method, as indicated in Section
2.
In order to have insight into which peaks could be involved in
the discrimination of the Arabica coffee samples according to their
overall quality, a subset of 20 samples (60 replicates) were selected.
Eleven of them had the best notes of overall quality, between 4 and
4.5, and were designated as class one, while the other nine samples

http://www.models.kvl.dk/source/
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ig. 2. Original chromatograms (A) and pre-treated chromatograms (B). The indi-
ated regions in the two figures were expanded to show a detail of the alignment.

ith notes below 2.5 composed class two. The OPS method was
pplied to this pretreated subset in order to identify the main peaks
nvolved in discriminating the two classes. The 13 selected peaks
re indicated as vertical lines in Fig. 3.

PLS-DA was applied to the selected peaks and the
V1 × LV2 × LV3 scores plot are indicated in Fig. 4A. In this
lot, low overall quality coffee samples are distinguished from
hose of high quality. Samples of low overall quality, with negative
cores in LV1 (51.28% of the selected information), are located on
he left, well separated from samples with high overall quality,
ith positive scores, on the right side. Fig. 4B shows the LV1 versus

V2 loadings and scores biplot. The numbers indicate the peaks
efined in Fig. 3.

Considering the LV1 loadings in Fig. 4B, it can be seen that
hen compounds 3-methypropanal (3), 2-methylfuran (5), fur-

ural (28), furfuryl formate (35), 5-methyl-2-furancarboxaldehyde
44) and 4-ethylguaiacol (67) appear in higher amounts, the over-
ll quality of the Arabica coffee is increased. On the other hand,
hen compounds such as 3-methylthiophen (21), 2-furanmethanol

cetate (46), 2-ethyl-3,6-dimethylpyrazine (57) and 1-(2-furanyl)-
-butanone (53) are more abundant, the overall quality of the
roduct drops. The compounds not identified (N/I) (61, 64 and 65),
lso important to discriminate the quality of the Arabica coffee, are
ow being identified by new mass spectrometric analyses.

According to Arctander [37], 3-methylpropanal has a sweet and

ruity flavor and is considered one of the key odorant compounds
f roasted Arabica ground coffee [38]. Vernin [39] described 2-
ethylfuran as having a burnt material aroma with a sweet odor

ery similar to that of coffee. The flavor of furfural is similar to
hat of bread and caramel at certain concentrations, still possess-

ig. 3. Peaks selected by the OPS method and used in PLS-DA from chromatograms
f good overall quality ( ) and bad overall quality ( ) coffees obtained by
sing a PDMS/DVB fiber and GC-FID.
a Acta 634 (2009) 172–179

ing a bitter taste character [40]. The flavor of furfuryl formate is
associated to malt, fruits and cereal aromas, while 5-methyl-2-
furancarboxyaldehyde has a spicy, candy and slightly caramel odor
[37]. 4-Ethylguaiacol has a smoky and burnt material flavor [41]
and 3-methylthiophene is responsible for a slightly sweet off-flavor
similar to tinned meat [42], with sulfuric odor like baked onions
[43]. The flavor of 2-ethyl-3,6-dimethylpyrazine was described as
burnt material and earthy by Wagner et al. [44] and as fermented
stuff by Maeztu et al. [45]. However, except for the last three com-
pounds, the others are not classified with high odoriferous activity,
i.e., they are not considered as the main potent constituents of the
coffee flavor [46]. From the above analysis, it is confirmed that the
quality of coffee is rather complex and that the quality informa-
tion can be effectively enhanced by the presence of less odoriferous
compounds.

More complete information can be given when taking into
account the precursor compounds of these selected volatiles. Thus,
the great number of furan derivatives indicates the important role
that carbohydrates and free sugars, like sucrose, play in the final
quality of the beverage. It is well known that furans are formed
by thermal degradation of sugars and carbohydrates [47]. In wines,
for example, fructose is an important compound that increases its
quality [48].

According to Franca et al. [2], the highest quality coffee samples
have higher protein levels in comparison to “rio” (low quality) sam-
ples. The oxidative degradation of proteins and sugars is the main
route for aldehyde formation [49], while sulfur-containing amino
acids (cysteine, cystine and methionine) are the precursor of sulfur
compounds like 3-methylthiophene [50]. So, lower protein levels
in bad quality samples indicate higher degradation ratios of sulfur-
containing amino acids and, consequently, higher concentrations
of 3-methylthiophene in the headspace.

Pyrazine derivatives are formed by Maillard reactions, Strecker
degradation and pyrolysis of hydroxyl amino acids [51], and are con-
sidered as natural perfuming of foods [52]. The phenol derivatives
are formed by degradation of free phenolic acids during the roast-
ing process [50]. Methoxyphenols, for example, 4-ethylguaiacol,
4-vinylguaiacol and vanillin are among the 22 main compounds
responsible for the flavor of roasted coffee [18].

3.3. Regression models

To build the regression models for the four descriptive quantita-
tive sensory analyses (flavor, body, cleanliness and overall quality),
the mean values of the notes indicated by the two cuppers were
used as the dependent variables (y) and 174 chromatograms refer-
ring to 58 Arabica coffee samples as independent variables (matrix
X) were used. Through a t-paired test [53], using a confidence limit
of 95%, the notes supplied by the cuppers for three attributes (body,
cleanliness and overall quality) did not present significant differ-

ences. A higher reliable limit was necessary only for the attribute
flavor (99%).

To form the calibration sets of each model, 48 samples
(144 chromatograms) were randomly selected. Leave five out
cross-validation was the method used to select the number of

Table 2
Latent variable numbers, RMSECV and rcv for PLS models.

Model No. LVa RMSECVb rcv
c

Flavor 7 0.39 ± 0.05 0.89 ± 0.03
Body 7 0.18 ± 0.02 0.88 ± 0.03
Cleanliness 8 0.32 ± 0.04 0.91 ± 0.02
Overall quality 6 0.38 ± 0.05 0.91 ± 0.03

a Latent variable number.
b Root mean square error of cross-validation.
c Cross-validation correlation coefficient.
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ith low overall quality (class two): Green numbers (21, 46, 53, 57) represent imp
eaks for high overall quality. (For interpretation of the references to color in this fi

omponents in the models (15 replicates of five samples were left
ut at a time). The 10 remaining samples, corresponding to 30
hromatograms were used to form the test set.

From the pretreated data matrix (174 × 20,640), the baseline
egions without chemical information were removed, with only the
hromatographic peaks remaining. The variable selection for the
onstruction of the models was carried out by the OPS method. In
his way, from an initial set of 20640 variables, 1350 were selected
or the construction of the flavor model (A), 1350 for body (B), 1550
or cleanliness (C) and 1350 for overall quality (D). These variables

re indicated as vertical lines in Fig. 5.

The number of latent variables used in the PLS models was deter-
ined from the RMSECV values. Table 2 shows the number of latent

ariables selected for each sensory attribute and the respective sta-
istical parameters RMSECV and rcv.

Fig. 5. Regions of the chromatograms selected by the OPS method for the regre
adings plot (B): (�) Good overall quality coffee samples (class one) and (�) samples
t peaks for low quality and blue numbers (other numbers) indicate the important
gend, the reader is referred to the web version of the article.)

Using the number of latent variables indicated in Table 2 for
all calibration models, it was, in general, possible to describe 95%
and 52% of the variance used in blocks Y and X, respectively. The
models were validated by the external data set, composed of 10
samples (30 replicates). Fig. 6 contains the prediction samples of
each model, distributed in the cross-validation sets and Table 3
shows the measured and predicted values of the prediction sam-
ples for each model. The RMSEP values were 0.32 for flavor, 0.22 for
body, 0.28 for cleanliness and 0.34 for overall quality.

Due to the scale used to describe the sensory analysis notes (1–5

points), the relative errors tend to be higher for samples with low
notes and decrease when the values became higher. Because of
this, when calculating the cross-validation and prediction errors
for each replicate, the following criterion was used: if the differ-
ence between the cuppers mean notes and the notes predicted

ssion models. Flavor (A), body (B), cleanliness (C) and overall quality (D).
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rediction ( ) sets. Flavor (A), body (B), cleanliness (C) and overall quality (D).

b
o
v
T
i

m
t
t
v

Table 4
Number of desregarded replicates predicted in the PLS models for cross-validation
and prediction.

Calibration sets Prediction sets

Flavor 15 0

T
M

F

S

2

4
5

5

Fig. 6. Plots of measured vs. predicted samples in calibration (©) and p

y the regression model was higher than two standard deviations
btained by the difference between the cuppers notes, the cross-
alidation and predicted notes of the replicates were disregarded.
he calibration and prediction errors for each model are indicated
n Table 4.
The flavor of coffee is composed of an extremely complex
ixture of volatile compounds with different intensities, concen-

rations and odorific sensations. According to De Maria et al. [54],
he same compound could present a positive as well a negative fla-
or to the beverage depending on its concentration and synergic

able 3
easured values given by the experts and predicted values from the regression models.

lavor Body

am.a Meas.b Pred.c Sam. Meas. Pred.

1 2.75 3.01 ± 0.02 11 2.75 2.88 ± 0.03
4 4 3.87 ± 0.09 12 3.75 3.33 ± 0.03

13 3.5 3.27 ± 0.08 15 3 3.33 ± 0.07
4 3.5 3.34 ± 0.10 16 3 2.82 ± 0.11

37 3.75 3.70 ± 0.05 21 2.75 2.67 ± 0.07
5 3.5 3.41 ± 0.09 29 3 3.19 ± 0.04
0 3.5 3.52 ± 0.11 36 2.75 2.77 ± 0.11

51 3.5 3.33 ± 0.06 41 3 2.84 ± 0.04
57 3 3.22 ± 0.11 45 2.5 2.42 ± 0.21

8 3.5 3.18 ± 0.15 46 3 3.06 ± 0.05

a Prediction samples.
b Measured.
c Predicted.
Body 0 0
Cleanliness 1 0
Overall quality 2 1

Cleanliness Overall quality

Sam. Meas. Pred. Sam. Meas. Pred.

1 3.17 3.20 ± .0.5 5 4 3.92 ± 0.19
21 3.17 2.81 ± 0.14 9 3.75 3.78 ± 0.08
22 3.67 3.35 ± 0.21 13 3.25 2.99 ± 0.10
24 3.17 3.39 ± .0.2 15 3.25 3.41 ± 0.15
31 3.17 3.22 ± .0.5 22 4 3.26 ± 0.35
37 3.67 3.52 ± 0.01 31 3.25 3.26 ± 0.14
39 2 2.49 ± 0.08 34 2.25 1.98 ± 0.09
42 4 4.21 ± 0.06 35 3 2.91 ± 0.06
44 3 3.21 ± 0.03 47 3.25 3.30 ± 0.09
56 3.17 3.20 ± 0.10 56 3 2.95 ± 0.13
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ffects, when combining with other compounds. Due to all these
ffects the majority of compounds detected with the SPME-GC-
ID were selected by the OPS algorithm for the construction of the
alibration models (Fig. 5).

Since the overall quality depends on other attributes, such as fla-
or, body and cleanliness, it is expected that a coffee well evaluated
n terms of overall quality will also have a high evaluation in one
r more of the other attributes. However, the same consideration
annot be taken as a rule when comparing flavor, body and clean-
iness among themselves, although, in some cases, these attributes
ould have a certain degree of correlation. Due to the high correla-
ion observed by the cuppers between the attributes of the analyzed
amples, most of the selected peaks used for the construction of the
egression models were important for the prediction of all sensory
ttributes.

. Conclusions

The discriminant analysis (PLS-DA) carried out on the chroma-
ographic profiles of sound beans indicated that the compounds
-methypropanal, 2-methylfuran, furfural, furfuryl formate, 5-
ethyl-2-furancarboxyaldehyde, 4-ethylguaiacol, 3-methylthio-

hene, 2-furanmethanol acetate, 2-ethyl-3,6-dimethylpyrazine, 1-
2-furanyl)-2-butanone and three other not identified compounds
61, 64 and 65 from Table 1) could be considered as possible markers
or the overall differentiation of coffee beverages.

The regression models (PLS) using chromatographic profiles pre-
icted very well the notes conferred by the cuppers for flavor, body,
leanliness and overall quality of Brazilian Arabica coffees. From
he results obtained in this study, the methodology proposed is a
romising alternative tool for monitoring coffee beverage evalua-
ion.
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