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Relevance vector machines for multivariate
calibration purposes
Noslen Hernándeza∗, Isneri Talaveraa, Angel Dagob, Rolando J. Biscayc,
Marcia M. Castro Ferreirad and Diana Porroa

The introduction of support vector regression (SVR) and least square support vector machines (LS-SVM) methods
for regression purposes in the field of chemometrics has provided advantageous alternatives to the existing linear
and nonlinear multivariate calibration (MVC) approaches. Relevance vector machines (RVMs) claim the advantages
attributed to all the SVM-based methods over many other regression methods. Additionally, it also exhibits
advantages over the standard SVM-based ones since: it is not necessary to estimate the error/margin trade-off
parameter C and the insensitivity parameter � in regression tasks, it is applicable to arbitrary basis functions, the
algorithm gives probability estimates seamlessly and offer, additionally, excellent sparseness capabilities, which can
result in a simple and robustmodel for the estimation of different properties. This paper presents the use of RVMs as a
nonlinearMVCmethod capable of dealingwith ill-posed problems. To study its behavior, three different chemometric
benchmark datasets are considered, including both linear and non-linear solutions. RVM was compared with other
calibration approaches reported in the literature. Although RVM performance is comparable with the best results
obtained by LS-SVM, the final model achieved is sparser, so the prediction process is faster. Taking into account the
other advantages attributed to RVMs, it can be concluded that this technique can be seen as a very promising option
to solve nonlinear problems in MVC. Copyright © 2008 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

The goal of multivariate calibration (MVC) is to model the
relation between a univariate chemical or physical property and
a multivariate set of predictor variables in many cases contained
in easily measured spectra. The property of interest is usually
determined by using a reference method that is often time
consuming, expensive and laborious. A good calibration model
should be able to replace the reference method. The most
commonly used MVC technique is partial least squares (PLS).
This method has the advantage that it deals with the so-called
ill-posed problems often produced as a consequence of strong
correlation between the measured variables in a spectral data or
large number of measurements in comparison with the number
of recorded spectra [1–3]. However with PLS, nonlinear relations
can only be modeled in a limited way by taking into account more
latent variables.

Neural Networks are probably the most popular way of doing
high dimensional regression estimation. They are considered
to be good to deal with nonlinear spectral data. Nevertheless,
they have two main drawbacks [4]. Their architecture has to
be determined a priori or modified while training by some
heuristic which results in a non-necessarily optimal structure of
the network and can become a difficult combinatorial problem
from multilayer networks. Unfortunately, Neural networks can get
stuck in local minima while training and in many cases it is not
even desired for the network to obtain its minimum.

The introduction in the field of chemometrics of SVM-based
regression methods [5–7] offers advantageous alternatives to
the existing linear and nonlinear MVC approaches, due to their

capabilities to solve ill-posed problems and lead to global models
that are often unique, and exhibit good prediction abilities and
good performance when dealing with nonlinear MVC problems,
where the common methods are weak.

The excellent performance of SVR and LS-SVM as MVC
techniques solving ill-posed problems in a selected case has
been demonstrated by Thissen and co-workers [8,9]. These
papers show that both SVM and LS-SVM outperform the
other models (PLS, two-dimensional penalized signal regression
methods (TPSR)), and it can be seen that LS-SVM also performs
better than its predecessor SVM. The authors attribute this
behavior to the fact that probably LS-SVM can be optimized
much more accurately due to its computational simplicity (less
parameters and much faster). However, they presented as a
possible advantage of SVMs over LS-SVM the fact that usually less
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support vectors than training objects are required in SVMs models
(sparseness). LS-SVM uses all training objects in their final models;
hence, no sparseness is obtained, only using pruning techniques
applied to the Lagrange multipliers [10] sparse models can be
obtained.

In spite of the advantages attributed to the SVMs, the support
vector methodology does exhibit significant drawbacks. It does
not allow for the liberal use of an arbitrary kernel function
K (·, ·), because this function must satisfy Mercer’s conditions.
Furthermore, SVMs require to determine the error/margin trade-
off parameter C and the insensitivity parameter �, which generally
entails a cross-validation procedure, which is wasteful both of
data and computation. Finally, its output is a point estimate
instead of the conditional distribution p(t|x) in order to capture
uncertainty in the prediction, therefore its predictions are not
probabilistic. Taking into consideration these facts, it is possible
to achieve improvements in relation with the other SVM-based
methods if we are able to solve these disadvantages.

One possible way to approach this objective is the use
of relevance vector machine for regression (RVMR), originally
introduced by Tipping [11]. RVMR is a probabilistic sparse kernel
model identical in functional form to the SVM, where a Bayesian
approach to learning is adopted [12,13], introducing a prior
over the weights governed by a set of hyperparameters, one
associated with each weight whose most probable values are
iteratively estimated from the data. Sparsity is achieved because
in practice the posterior distributions of many of the weights are
sharply peaked around zero [14].

One of the main advantages of the RVMR is its capability to
obtain a generalization performance comparable to SVM but
using dramatically fewer kernel functions. Furthermore, the RVMR
suffers from none of the other limitations of SVM outlined above.

The main goal of this paper is to demonstrate the use of RVMR
as a MVC technique capable of dealing with ill-posed problems,
specially in dealing with nonlinear data.

2. RELEVANCE VECTORMACHINES IN
REGRESSION

Tipping [11] proposed the relevance vector machine (RVM) to
recast the main ideas behind SVMs in a Bayesian context. For
a regression problem, given a training dataset {xn, tn}N

n=1, the
following generalized linear regression model can be used to
describe the mapping relation between the input pattern vector
x and the scalar target t:

tn = y(xn,w) + �n, t = y+ � (1)

where the ‘errors’ � = (�1, . . . , �n) are modeled probabilistically
as independent zero-mean Gaussian, with variance �2, so p(�) =∏N

n=1 N(�n|0, �2); w = (w1, . . . wM) is the parameter vector and
y(xn,w) can be expressed as a linearly weighted sum of some
basis functions �(x):

y(x,w) =
M∑

m=1

wm�m(x) + w0, y = �w (2)

Here � = [�1, . . . , �M] is the N × M ‘design’ matrix whose
columns comprise the complete set of M ‘basis vectors’. Note
that the form of the function (2) is equal to the form of the

function for an SVM, where we identify our general basis functions
with the kernel as parameterized with the training vectors:
�m(x) = K (x, xm) and �(xn) = [1, K (x1, xn), . . . , K (xN, xn)]. If bias
is not included, � will be an N × N matrix, just eliminating the
first column in which all elements are 1.

The error model assumed implied p(tn|xn) = N(tn|y(xn), �2),
where the notation specifies a Gaussian distribution over tn

with mean y(xn) and variance �2. Due to the assumption of
independence of the tn, the likelihood of the complete dataset
can be written as

p(t|w, �2) = (2��2)−N/2 exp

{
− 1

2�2
‖t− �w‖2

}
(3)

Maximum-likelihood estimation of w and �2 from the above
equation will generally lead to overfitting problem. Here,
though, RVM adopts a Bayesian perspective, and ‘constrains’ the
parameter by defining an explicit prior probability distribution
over them, encoding a preference for smoother (less complex)
functions by making the popular choice of a zero-mean Gaussian
prior distribution:

p(w|˛) =
N∏

i=0

N
(
wi|0, ˛−1

i

)
(4)

= (2�)−M/2

M∏
m=1

˛1/2
m exp

(
−˛mw2

m

2

)
(5)

with ˛ = (˛1, . . . , ˛M) a vector of M hyperparameters. It must be
stressed that there is an individual hyperparameter associated
independently with every weight, moderating the strength of
the prior over its associated weight. It is this form of prior that
is ultimately responsible for the sparsity properties of the model
[15].

Given ˛, the posterior parameter distribution conditioned on
the data is given by combining the likelihood and prior within
Bayes’s rule:

p(w|t, ˛, �2) = p(t|w, �2)p(w|˛)

p(t|˛, �2)
(6)

is a Gaussian distribution N(�, �) with

� = (A+ �−2�T �)−1 � = �−2��T t (7)

and A is defined as diag(˛1, . . . , ˛M). Rather than extending the
model to include Bayesian inference over these hyperparameters
(which is analytically intractable), Sparse Bayesian learning can
be formulated as a type-II maximum likelihood procedure; that is
a most probable point estimate ˛MP may be found throughout
the maximization of the marginal likelihood, or equivalently, its
logarithm L(˛) with respect to the hyperparameters ˛ (the same
can be done to estimate the hyperparameter �):

L(˛) = log p(t|˛, �2) = log

∫ ∞

−∞
p(t|w, �2)p(w|˛) dw

= −1

2

[
N log 2� + log |C| + tTC−1t

]
(8)
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with

C = �2I+ �A−1�T (9)

Once most probable values ˛MP (and �MP) have been found,
a point estimate �MP for the parameters is then obtained
by evaluating Equation (7) with ˛ = ˛MP and � = �MP . The
crucial observation is that typically the optimal values of many
hyperparameters are infinite [15]. From Equation (7), this leads to a
parameter posterior infinitely peaked at zero for many weights wm

with the consequence that �MP correspondingly comprises very
few non-zero elements. Those training vectors associated with
the remaining non-zero weights are called ‘relevance’ vectors, in
deference to the principle of automatic relevance determination
[15].

Predictions are made based on the posterior distribution over
the weights, conditioned on the maximized values ˛MP and �2

MP.
The predictive distribution for a new datum x∗, using Equation (6)
is defined as follows:

p
(
t∗|t, ˛MP, �2

MP

) =
∫

p
(
t∗|w, �2

MP

)
p
(
w|t, ˛MP, �2

MP

)
dw (10)

which is easily computed due to the fact that both terms
in the integrand are Gaussian, resulting in a Gaussian too
p(t∗|t, ˛MP, �2

MP) = N(t∗|y∗, �2
∗ ) with:

y∗ = �T �(x∗) (11)

�2
∗ = �2

MP + �(x∗)T ��(x∗) (12)

It can be seen that the predictive mean is intuitively y(x∗, �)
giving a final (posterior mean) approximator y = ��MP

3. EXPERIMENTAL SECTION

In our experiments, RVMR method is compared with other
regression methods like PLS, SVR and LS-SVM, whose
performance have been studied in the literature [9].

3.1. Datasets

The proposed method is evaluated in three different datasets.
The first dataset is related to NIR spectra of ternary mixtures
of ethanol, water and 2-propanol, originally measured and
described by Wülfert et al. [16]. A mixture design of 19
different combinations of mole fractions are analyzed in a
wavelength range of 850–1049 nm with a resolution of 1 nm
(200 wavelengths). Each mixture is measured at five different
temperatures 30, 40, 50, 60, 70◦C . These data are representative
of a well-known analytical chemical problem in which NIR spectra
of a ternary mixture are nonlinearly affected by temperature-
induced spectral variations. As a result, relations between spectra
from different temperatures cannot be made straightforward.

In order to compare our results with previous works presented
by Thissen et al. [9], we maintain the same test set, containing
the mixtures 5, 6, 9, 11, 14, 15 per temperatures and the other 13
mixtures per sample making up the training set (65 objects). In
the same way, pretreatment of the spectra has been performed
according to Wülfert’s paper (baseline corrected and mean-
center).

Taking into account the advantages of SVM-based global
models to sell-off the prediction for all the temperatures with
a unique model, we set up the RVMR global model with a training
set data from all the temperatures.

The second dataset named Tecator, comes from the food
industry [17]. It consists of 215 near-infrared absorbance spectra
of meat samples, recorded on a Tecator Infratec Food and Feed
Analyzer. Each observation consists of a 100-channel absorbance
spectrum in the 850–1050 nm wavelength range and is associated
with a content description of meat sample, obtained by analytic
chemistry; the percentage of fat, water and protein are reported.
The regression problem consists in the prediction of the fat
percentage from the spectrum. From the 215 spectra, 43 are kept
aside as a testing set and the 172 remaining samples are
used for model estimation (training set). Original spectra are
preprocessed, each spectrum is reduced to zero mean and unit
variance.

We have utilized as third dataset a pharmaceutical tablets
dataset [18,19]. This dataset is a near infrared (NIR) transmittance
spectra for pharmaceutical tablets with 310 spectra and 404
variables or wavelengths from 7400 to 10507 cm−1. Calibration
models in this paper were carried out with a relative small dataset
defined as ‘preliminary calibration set’ in the original paper [18],
consisting of 120 samples from the pilot scale. The goal in this
dataset is to predict the active substance content (w/w) of a
pharmaceutical tablet. Dyrby et al. [18] reported that PLS was
capable of achieving acceptable performance, indicating that the
inherent data structure is approximately linear. We have selected
this dataset to investigate if the proposed method can deal with
linear problems. We have divided the complete dataset in 65
samples for training and 55 samples for testing. Multiplicative
scatter correction (MSC) was used as preprocessing method.

3.2. Software and optimization

All calculations have been performed using Matlab. SVR was
performed using a toolbox for Matlab called spider [20]. For LS-
SVM, the Matlab/C toolbox [21] was used. For RVMR calculations,
an implementation described by Tipping [15] and developed in
Matlab [22] was used.

RVMR models have been created using a Gaussian (RBF) or a
linear spline kernel. Its kernel-specific parameter has been tuned
using k-fold cross-validation. Since the cross-validation procedure
was performed over just one parameter (� or �), the optimization
error for each of the parameter values can be visualized in a line
plot, so the lowest prediction error can be seen and then the
optimal parameter value can be picked.

It is important to notice that while doing the cross-
validation, we cannot run RVMR setting an arbitrary kernel-
specific parameter. For example for RBF kernel, when the width
is too big, the Hessian will become ill-conditioned easily. Also,
if there are some repeated input vectors or some of the input
vectors are very close to each other, the Hessian will become
semi-positive definite and it would lead to numerical troubles
when computing its inverse using Cholesky decomposition. So it
is difficult to implement the cross-validation for RVMR in practice.

Optimization of the SVR (C, � and specific kernel parameter) and
LS-SVM (� and specific kernel parameter) parameters have been
done by a grid search based on k-fold cross-validation. Here, a
range of parameter values is specified and each combination of
parameters values is cross-validated. The combination with the
lowest error is selected for training the algorithm.

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 686–694
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Figure 1. Root mean square errors in cross-validation for (a) ethanol, (b) water and (c) 2-propanol. Indicated with an asterisk is the optimal value of �.

In order to obtain final prediction errors, an independent test
set is used. The comparison of the accuracy among the different
models is done using RMSEP, defined by

RMSEP =

√√√√ 1

N

N∑
n=1

(̂tn − tn)2 (13)

4. RESULTS

4.1. Temperature influenced near-infrared
spectra dataset

Some methods reported in the literature were applied to this
dataset with the aim of comparing the performance of RVMR with
alternative approaches. Those with best results were selected:
SVR global model [8] and LS-SVM [9] global pruning model for
nonlinear approaches. Furthermore, a local PLS model [8] (linear
regression) was chosen because it is the best PLS approach
reported. The global PLS method was not included due to its
poor performance, with a reported RMSEP of 0.0195 for ethanol,
0.085 for water and 0.023 for 2-propanol.

In order to obtain the prediction error (RMSEP) values of these
methods reported in the literature, we reproduced them running
the different algorithms with the parameter values specified in
the original papers.

For RVMR, a Gaussian (RBF) kernel was utilized and its single
input scale parameter was tuned using fivefold cross-validation
on the training set for each one of the three compounds.

Different range of values have been specified for each
compound: 0.01–0.65 for ethanol, 0.01–1 for water and 0.01–0.6
for 2-propanol all in steps of 0.05.

The corresponding (�) values obtained for ethanol, water and
2-propanol as shown in Figure 1 are � = 0.45, � = 0.25 and � =
0.55, respectively. With these � values, the RVMR was trained
again with the complete training set.

A comparison of the mole fraction prediction errors of different
methods for ternary mixtures of ethanol, water and 2-propanol
are shown in Figure 2.

Figure 2 shows that RVMR, like the other nonlinear methods,
performs better than the PLS-based models. It can be noticed that
LS-SVM is slightly more accurate than RVMR (in a factor of 1.16)
but the latter has better performance than the original SVR (in a
factor of 1.08), except for the case of water.

A graphical representation of real values versus predicted
values of the dependent variable in the test set for each
component using the RVMR method is presented in Figure 3.

It confirms that prediction accuracies (generalization capabilities)
are quite good for all of them.

However, the RVMR method exhibits some important
advantages over the LS-SVM and the SVR methods. Table I
presents the numbers of support vectors for SVM and LS-SVM
[8,9] and the relevance vectors for RVMR needed to build each
model for the prediction of the three chemical components.

It is evident that RVMR method is drastically the most sparse;
a few relevant vectors are required to build a good model. In all
cases, the sparsity is reduced more than a half with respect to the
other methods implying that less than a quarter of the training
set objects contribute to the fitted model.

LS-SVM normally uses all training objects in the final model.
To achieve some sparsity in the model, it is necessary to apply
pruning techniques to the Lagrange multipliers [10], which
implies an increase of both final error and computational cost.
Nevertheless, neither the SVR nor the pruned LS-SVM can reach
the levels of sparsity that are obtained by the RVMR method.

It is interesting to notice that, in the case of water, even
though more relevance vectors were required by the RVMR
method in comparison with the other components, it is precisely
in this case where it does not outperform the other nonlinear
approaches. When Thissen et. al. [9] pruned the water LS-SVM
model, they could not reach the low number of support vectors

Figure 2. Performances of different approaches together with the newly
presented global model based on RVMR.

J. Chemometrics. 2008; 22: 686–694 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 3. Real values versus predicted values for (a) ethanol, (b) water and (c) 2-propanol for RVMR models.

Table I. Number of vectors used and the percent of the training set
that they represented for each method

Ethanol Water 2-propanol

# SV % # SV % # SV %

SVR 39 60 27 41.5 36 55
LS-SVR 37 57 57 88 35 54

# RV % # RV % # RV %

RVMR 13 20 16 24 14 21

as SVR (41.5%), because the prediction error increased up to
0.0071. Hence, to obtain results comparable with SVR, they had
to maintain the number of support vectors equal to 57(88%).
However, RVMR achieves in this case much more sparsity (almost
half of the number of vectors used in SVR), although not better
RMSEP value. It is possible that such high level of sparsity shown
by RVMR is attempting against improvement of accuracy for the
case of water, although this is the best predicted compound.

To exhibit the influence of each training object to the final
solution, the estimated inverse variances values of the models
were used. Notice that when we talk in terms of RVMR, the
estimation of the inverse variance parameter ˛i according to the
maximum likelihood II method can be considered as a weighting
of the objects ‘importance’ in the regression. According to this,
the highest alpha values (lowest ˛−1

i ) are assigned to the least
relevant objects for the model fitting.

Figure 4 shows the most important training objects for each
model (relevance vector), as well as those who do not contribute
to the solution (˛i → inf or ˛−1

i = 0).
Due to the fact that the inverse variance values differ in

magnitude for each model (notice that the scales are different),
we decided to study the contribution of the training objects in
each model separately.

In order to show the location of the most important training
objects in each mixture design (proposed by Wülfert et al. [16]),
we follow the procedure explained by Thissen et al. [9]. Hence,
the importance of each mixture point in a design has been
obtained by taking the mean of the individual five-mixture design
corresponding to the five different temperatures.

Mixture design representing the model for predicting each
compound shows different distributions of the important training
objects. The relative importance of each object into a mixture
design is different too (Figure 5). Nevertheless there is a common
tendency in all the designs. It can be seen that all of them

Figure 4. Inverse variances of the objects for (a) ethanol, (b) water and (c)
2-propanol models.

uses training objects with a high mole fraction of ethanol and
2-propanol and a low fraction of water. Similar behavior was
obtained by Thissen et al. [9] using the traditional SVM. This was
explained from the fact that the NIR spectra of ethanol and 2-
propanol are similar while the one from water deviates much
more. Consequently, it is possible to conclude that it is more
difficult to distinguish ethanol from 2-propanol than ethanol from
water.

4.2. Tecator meat sample dataset

For this dataset, SVR and LS-SVM were carried out in order
to compare their performance with the new methodology
proposed. We also compare RVMR in this dataset with an
approach proposed by Rossi et al. [23] that combines variable
selection based on mutual information and LS-SVM (MI-LSVM).
Performance of different regression methods on this traditional
benchmark are reported in Rossi’s paper. The RMSEP for PLS was
gathered from this work.

A Gaussian (RBF) kernel was used for both SVR and LS-SVM.
A grid search based on k-fold cross-validation have been done
with k = 4 for selecting the hyperparameter values which result
in (C = 1000, � = 0.97, � = 0.5) for SVR and (� = 2989.21, � =
2.13) for LS-SVM.

For RVMR, a linear spline kernel was used and its single scale
parameter (� = 3.52) was chosen with fourfold cross-validation.

A comparison of fat content prediction errors for the different
methods are shown in Figure 6.

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 686–694
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Figure 5. Relative importance of training objects for (a) ethanol, (b) water and (c) 2-propanol.

Figure 6. Performances of different approaches together with the newly
presented model based on RVMR for Tecator dataset.

Table II. Number of vector used and the percent of the training set that
they represented for each method

SVR LS-SVM RVMR

# SV 147 148 35
% 85 86 20

Figure 6 shows almost the same behavior than in the previous
dataset. All nonlinear methods outperform the traditional PLS.
The only difference appears that in this dataset RVMR is slightly
more accurate than LS-SVM. Real values versus predicted values
on the test set using RVMR model are graphically represented in
Figure 7.

Interesting results for this dataset was reported by Rossi et al.
[23]. He compared combination of lineal and nonlineal methods
with dimensionality reduction techniques and variable selection.
His better results on this dataset were obtained with MI-LSVM,
which present an RMSEP of 0.66 (the NMSE reported by Rossi
was converted to RMSE for comparing). Predictions achieved with
the RVMR model built with all original variables are better than
predictions achieved by MI-LSSVM model built on a subset of
selected variables. Although Rossi in his paper obtained the best
results with MI-LSSVM, he did not include in his comparisons any
model built on original variables. But, instead of thinking in RVMR

Figure 7. Real values versus predicted values for RVMR model.

as an alternative to variable selection, it would be interesting
to investigate in future works if RVMR combined with variable
selection, in the same manner as Rossi did with LS-SVM and RBF,
improve RVMR results obtained here.

Table II confirms that RVMR is drastically more sparse than SVR
and LS-SVM. RVMR model required just 20% of the training set,
less than a quarter of the training samples required by the other
methods. In the case of LS-SVM, prunning techniques was applied
for obtaining a sparse model.

Figure 8 shows the influence of each sample in the training
set for SVR, LS-SVM and RVMR. The estimated inverse variances
were taken into account for RVMR model and estimated Lagrange
multipliers for SVR and LS-SVM models. There are samples that
are used by the three methods as well as others that are not
significant for any of them. This is the dataset in which RVMR
results less sparse, but it can be noticed that there are a great
difference with the other two methods.

4.3. Tablet dataset

SVR, LS-SVM and RVMR models were constructed for this dataset.
The PLS results reported in the literature were reproduced [18,24].

For SVR and LS-SVM parameters selection, the grid search was
carried out based on 10-fold cross-validation and a Gaussian (RBF)
kernel was used. The resulting hyperparameters values were (C =
10, � = 0.2, � = 0.61) for SVR and (� = 46.261, � = 0.65) for LS-
SVM.

For RVMR, a Gaussian (RBF) kernel was used and 10-fold cross-
validation to select its scale parameter value (� = 0.7).

J. Chemometrics. 2008; 22: 686–694 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 8. Importance of the objects for (a) SVR, (b) LS-SVM and (c) RVMR.

Figure 9. Performances of different approaches together with the newly
presented model based on RVMR for Tablet dataset.

The active substance content prediction errors for the different
approaches are shown in Figure 9.

It can be noticed that in this dataset, prediction errors of all
nonlinear approaches are very similar (SVR, LS-SVM and RVMR).
RVMR is slightly more accurate than SVR and LS-SVM. Also, the
differences between prediction errors of these methods and
traditional PLS is not so significant as in the other datasets.
PLS performs reasonably well on this dataset, corroborating the
strong linear relationship between the spectra and the desired
property; so RVMR, as well as the other nonlinear methods, have
demonstrated its good performance solving linear problems.

This dataset was also studied by Chen et al. [24]. They proposed
the use of Gaussian process (GP) for MVC. GP and RVMR have
many things in common. Indeed, RVMR can be interpreted as a

Figure 10. Real values versus predicted values of w/w for RVMR model.

special case of a GP, just that RVMR presents the sparsity property.
Support vector-based methods and nonlinear methods reported
by Chen et al. (artificial neural network (ANN) and GP) present very
similar performance on this dataset; especially for the case of GP.
Chen et al. stated that maybe a weak nonlinearity is present in this
dataset and for that reason nonlinear methods are more accurate.
Support vector-based methods and particulary RVMR works very
well in this dataset, achieving an estimate function that does not
overfit this possible weak nonlinearity present in this dataset and
generalizes well for unseen data.

The same number of support vector was selected by SVR
and LS-SVM (after applying prunning techniques). RVMR again
is much more sparse, retaining only a 6% of the training data.
These results are shown in Table III

The influence of samples in the training set for each method
are shown in Figure 11. Those objects which do not influence in
any of the models were marked in black. The great sparsity of
RVMR can be seen; all samples used by this method were used by
the others too. Also, there are many samples in common used by
SVR and LS-SVM.
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Table III. Number of vector used and the percent of the training set
that they represented for each method

SVR LS-SVM RVMR

# SV 34 34 4
% 52 52 6

Figure11. Importance of the objects for (a) SVR, (b) LS-SVM and (c) RVMR.

It should be pointed out that the prediction process of new
objects using the RVMR models obtained in this paper, compared
to the previously applied models is much faster, due to sparsity.
This is an important advantage if prediction has to be performed
online. The RVMR algorithm used in this paper makes no use
of specially developed efficient algorithms for training. More effi-
cient training approaches for RVMR are discussed in Faul et al. [25].

5. CONCLUSIONS

In this paper, a new method for nonlinear MVC based on
RVMR was presented. Good results obtained with RVMR suggest
that they constitute an effective tool that could lead to
improvements in other physical–chemical properties estimation
from NIR spectra. RVMR also demonstrates excellent sparseness
capabilities, which can result in simple and accurate models for
the estimation of these properties.

RVMR was compared with other methods: PLS, SVR and LS-SVM.
Two nonlinear dataset were used, one of them with NIR spectra
affected by nonlinear temperature-induced variation in which
Global models were applied, by implicitly taking the temperature
into account. One linear dataset was studied for testing the
performance of RVMR in a linear problem, giving excellent results.
For all these dataset, RVMR prediction accuracy was comparable
to those reached by SVR and LS-SVM, obtaining in some cases the
best results and achieving the greatest levels of sparsity. However,
this does not allow to absolutely conclude that RVMR is always
the best method to be used. This should be determined for each
concrete problem.

The inverse variance in the RVMR model and Lagrange
multipliers in SVR and LS-SVM were used to indicate the
relative importance of each training object which aids in the
interpretation of the results.

Although RVMR has the advantages mentioned above, it
also has some limitations in practical applications. The learning
procedure of RVMR is usually much slower than the SVR and
LS-SVM. It is a problem that requires O(N ∗ M2) operations and
O(M2) storages due to the necessity of repeatedly computing
and inverting the Hessian matrix. Then the training set cannot
be too large. But for small dataset, as those used in this paper,
its computational cost is comparable with SVR and LS-SVM,
especially due to the fact that in RVMR just one parameter has
to be tuned, unlike SVR and LS-SVM which have to adjust three
and two parameters, respectively. Also in the case of LS-SVM, for
obtaining sparse models, it is necessary to do an extra prunning
process, that also consumes computational time.
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