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THE OBJECTIVES OF THIS WORK
1) To develop a fast and simple QSPR methodology for prediction of 17O carbonyl chemical shifts in substituted benzaldehydes, comparable to the empirical model of Li&Li (LL)
2) To show that this methodology is based on well understandable chemical concepts and that the QSPR models can be validated unlike the LL model

3) Touse the QSPR models for general substituted benzaldehydes, in advance of the LL model
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